Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Butterfly study reveals traits and genes associated with establishment of new populations

29.03.2011

A team of scientists has discovered that descendants of "exploratory" butterflies that colonized new habitats differ genetically from their more cautious cousins.

The team, led by James Marden, a professor of biology at Penn State University, and Christopher Wheat, a post-doctoral scholar working at both Penn State and the University of Helsinki, has revealed some of the genetic bases for faster egg maturation, a higher rate of energy metabolism, and superior flight ability -- traits that provide an advantage to butterflies that stray from familiar territory to found new populations in previously unoccupied habitat patches.

The results have potentially broad importance because they show how natural selection may act in species that occupy spatially distinct habitat patches. This research will be published in the print edition of the journal Molecular Ecology in May, and is available in early-online form at <http://onlinelibrary.wiley.com/doi/10.1111/j.1365-294X.2011.05062.x/full>.

Marden explained that most species are not found everywhere because they tend to require very specific habitats. "Butterflies, like many other species, are specialists. They are picky about where they live. This pickiness gives a species what ecologists call a clumped or patchy distribution," Marden said. "In a patchy environment, individual organisms face a fundamental choice between remaining in their native patch or venturing forth to find a different patch of suitable habitat. Staying put is safer for immediate survival but may expose one's offspring to crowding or parasites, whereas dispersal is dangerous but offers a potentially big payoff if a large, unoccupied patch is located."

Marden and Wheat collaborated with Ilkka Hanski, a professor at the University of Helsinki, to study how a particular species of butterfly successfully establishes new populations. "We wanted to understand better the genes and physiology involved in determining sedentary, 'stay-at-home' traits versus exploratory, 'venture-forth' traits," Marden said. "Evolutionary biologists are fascinated by cost-benefit questions such as how natural selection produces and maintains both 'stay-at-home' and 'venture-forth' varieties within species." Marden also explained that the "stay-at-home versus venture-forth" dichotomy is fundamentally important for ecology because habitat changes, disease, and chance events cause local extinction of small populations in individual patches. "Species persistence on a regional scale requires that the rate of establishment of new populations must be at least as high as the rate of local-population extinctions," Marden said. "Dispersal of individual females is what determines the establishment rate, along with the number of patches and distances between them." Much of what is known about the biology of species in patches -- called metapopulations -- comes from Hanski's butterfly research, for which he will be awarded this year's Craaford Prize, generally considered as ecology's version of a Nobel prize.

Together, Marden and Hanski's labs used new gene-sequencing technology to characterize thousands of protein-coding genes in Glanville fritillary butterflies from the Åland Islands of Finland. Then, they measured and compared the variation in gene-expression levels in females from established populations of butterflies -- those originating from old, local populations that had persisted for a minimum of five years -- with new, local populations that had been founded by dispersing butterflies. They found that new-population and old-population butterflies differed most prominently in how they expressed certain genes that control the timing and release of stored proteins for egg production and the maintenance of flight-muscle proteins. They also differed in flight metabolic rate -- a measure of muscle performance and flight ability.

Previous work by members of this team and other collaborators had revealed that an allele -- a variable DNA sequence -- in a gene called phosphoglucose isomerase (Pgi) differed significantly between the old and the new populations. One Pgi allele was associated with two important aspects of metabolism within the butterfly's abdomen and its thorax. First, the new-population, "venture-forth" females were more likely to possess a particular Pgi allele associated with faster egg production. "It's easy to imagine why this kind of ovarian-function trait would provide 'venture-forth' females with an advantage," Marden explained. "Abandoning the secure, known environment can be a perilous endeavor, and life expectancy for such butterflies is probably greatly reduced. Under these conditions, the ability to get a reproductive head start would allow these adventurers to mate earlier, and to fly off to lay their eggs in new habitat patches sooner." Second, the scientists found that the same Pgi allele predominates in females that are better "sprinters," able to fly better for short distances. Marden explained that for those individuals that fly away to colonize new areas, exceptional muscle function could be a more crucial trait than it would be for "stay-at-home" non-explorers.

In the new study, another gene variant also stood out as an important indicator of butterfly flight ability. New-population females were more often missing a small part of the succinate dehydrogenase gene (Sdhd) and this small deletion was associated with the ability to maintain flight for a greater duration. "The Pgi gene variant seems to be associated with sprinting, and the Sdhd gene variant appears to be associated with endurance," Marden said. "It's easy to see why these traits and their associated genes would be found at higher frequencies in new populations. Better flight ability allows certain butterflies to be able to reach and settle new habitat patches."

Wheat, the paper's lead author, said, "We already knew about Pgi from previous work in other butterflies and what has been done so far in the Glanville fritillary butterfly. Now with Sdhd we have two genes in the same carbohydrate-metabolism pathway containing alleles of major effect for ecologically important traits." Marden also commented on the differences in gene expression involving protein dynamics. "Butterflies obtain protein only during larval feeding, whereas the adults rely on nectar, from which they obtain only carbohydrate," he said. "The timing and level of expenditure of stored proteins is one way to manipulate life history in a species where no more protein will be available to the adult."

Marden also said that this study system provides a great opportunity to observe evolution in action, in near-real time, and in ways that are coupled tightly with the ecology of the species. "Most evolutionary studies don't have nearly as much ecological detail as this study system, and comparable ecological systems generally don't address the physiology and genetic variants involved," he said. "We've set the stage for a powerful synthesis as this work moves forward."

This research was supported by grants from the National Science Foundation, the Academy of Finland, and the European Research Council.

CONTACTS

James Marden:
814-863-1384,
jhm10@psu.edu
Barbara Kennedy (PIO):
814-863-4682,
science@psu.edu

Barbara Kennedy | EurekAlert!
Further information:
http://www.psu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>