Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bucking Conventional Wisdom, Researchers Find Black Sea Bass Tougher Than Expected

12.03.2014

In a new study, fisheries researchers from North Carolina State University found that black sea bass (Centropristis striata) can usually survive the physical trauma that results from being hauled up from deep water then released at the surface. The finding is part of a larger study of the fish’s mortality rate, which will inform stock assessments designed to help ensure that the black sea bass fishery is sustainable.

Black sea bass are bottom-dwelling fish, and are often caught at depths of greater than 60 feet. When the fish are brought to the surface, the rapid change in pressure causes the fish’s swim bladder to expand. This forces other organs out of the way and can result in visible “barotrauma” – such as the fish’s stomach being forced partially out of its mouth.


Black sea bass with barotrauma (note stomach protruding from mouth). Click to enlarge. Photo: Jeff Buckel

Conventional wisdom long held that this sort of visible barotrauma meant that a fish would die when thrown back into the water. But that’s not true, according to the NC State study.

The research team was attempting to develop accurate estimates of “discard mortality” rates for black sea bass, meaning that they wanted to know what percentage of the fish would die if they were caught and thrown back. Discard mortality rates are used to make informed stock assessments for fish species, because it helps fisheries officials understand how many fish that are caught and released can be expected to survive. Black sea bass are a valuable species for commercial fishing and are also popular with recreational anglers. Millions of black sea bass are caught and released by recreational anglers off the south Atlantic coast of the U.S. each year.

The researchers came up with a novel method for determining the discard mortality rate for black sea bass. First, the researchers worked with a team of scuba divers to tag black sea bass in their natural habitat on the ocean floor. Then the researchers caught, tagged and released the same number of black sea bass in the same area on the same day. The fish tagged on the bottom served as a control group, since they were not subject to changes in atmospheric pressure or other injuries that could be incurred when caught and brought to the surface.

Over the next year, tagged black sea bass were caught by the researchers, or by recreational anglers or commercial fishing operations who returned the tags to the researchers. Researchers could then compare the number of tags returned from the experimental group (those tagged on the surface) to those returned from the control group (those tagged on the bottom). This allowed them to determine discard mortality rates.

The researchers had put the fish in the experimental group into one of four categories: those without visible injury; those with visible barotrauma; those with hook trauma (meaning the hook had caused significant internal injury); and “floaters” – those that couldn’t swim down into the water at all.

To their surprise, the researchers found that approximately 90 percent of the fish in the experimental group with visible barotrauma (but that weren’t floaters) survived. This was about the same survival rate as for fish that exhibited no visible injury at all. Fish with hook trauma had a survival rate of 36 percent, while floaters had a 16 percent survival rate.

“In previous work, estimates of discard mortality were limited to time periods soon after release,” says Paul Rudershausen, a research associate at NC State’s Center for Marine Sciences and Technology and lead author of a paper describing the research. “By tagging a control group, we were able to estimate the long-term effects of injuries associated with fishing.”

In addition to lending key insight into the black sea bass fishery, Rudershausen notes that the study “may give us insight into mortality for other important species with similar characteristics, such as red grouper and gag grouper.”

The paper, “Estimating reef fish discard mortality using surface and bottom tagging: effects of hook injury and barotrauma,” is forthcoming from the Canadian Journal of Fisheries and Aquatic Sciences. The paper was co-authored by Dr. Jeff Buckel and Dr. Joe Hightower, professors of applied ecology at NC State. The researchers worked closely with fisherman Tom Burgess on the project. The work was done under North Carolina Sea Grant Fishery Resource Grant projects 07-FEG-01 and 11-FEG-04.

-shipman-

Note to Editors: The study abstract follows.

“Estimating reef fish discard mortality using surface and bottom tagging: effects of hook injury and barotrauma”

Authors: P. J. Rudershausen, J. A. Buckel, and J.E. Hightower, North Carolina State University

Published: forthcoming, Canadian Journal of Fisheries and Aquatic Sciences

DOI: 10.1139/cjfas-2013-0337

Abstract: We estimated survival rates of discarded black sea bass (Centropristis striata) in various release conditions using tag–recapture data. Fish were captured with traps and hook and line from waters 29–34m deep off coastal North Carolina, USA, marked with internal anchor tags, and observed for release condition. Fish tagged on the bottom using SCUBA served as a control group. Relative return rates for trap-caught fish released at the surface versus bottom provided an estimated survival rate of 0.87 (95% credible interval 0.67–1.18) for surface-released fish. Adjusted for results from the underwater tagging experiment, fish with evidence of external barotrauma had a median survival rate of 0.91 (0.69–1.26) compared with 0.36 (0.17–0.67) for fish with hook trauma and 0.16 (0.08–0.30) for floating or presumably dead fish. Applying these condition-specific estimates of survival to non-tagging fishery data, we estimated a discard survival rate of 0.81 (0.62–1.11) for 11 hook and line data sets from waters 20–35m deep and 0.86 (0.67–1.17) for 10 trap data sets from waters 11–29 m deep. The tag-return approach using a control group with no fishery-associated trauma represents a method to accurately estimate absolute discard survival of physoclistous reef species.

Matt Shipman | EurekAlert!

Further reports about: Black atmospheric pressure black sea bass experimental fishing mortality species

More articles from Ecology, The Environment and Conservation:

nachricht Man-made underwater sound may have wider ecosystem effects than previously thought
05.02.2016 | University of Southampton

nachricht Sluggish electrons caught in action
04.02.2016 | Max-Planck-Institut für Quantenoptik

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Automated driving: Steering without limits

OmniSteer project to increase automobiles’ urban maneuverability begins with a € 3.4 million budget

Automobiles increase the mobility of their users. However, their maneuverability is pushed to the limit by cramped inner city conditions. Those who need to...

Im Focus: Microscopy: Nine at one blow

Advance in biomedical imaging: The University of Würzburg's Biocenter has enhanced fluorescence microscopy to label and visualise up to nine different cell structures simultaneously.

Fluorescence microscopy allows researchers to visualise biomolecules in cells. They label the molecules using fluorescent probes, excite them with light and...

Im Focus: NASA's ICESat-2 equipped with unique 3-D manufactured part

NASA's follow-on to the successful ICESat mission will employ a never-before-flown technique for determining the topography of ice sheets and the thickness of sea ice, but that won't be the only first for this mission.

Slated for launch in 2018, NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) also will carry a 3-D printed part made of polyetherketoneketone (PEKK),...

Im Focus: Sinking islands: Does the rise of sea level endanger the Takuu Atoll in the Pacific?

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister picture is being painted evoking the demise of the island states and their cultures. Are the effects of sea-level rise already noticeable on reef islands? Scientists from the ZMT have now answered this question for the Takuu Atoll, a group of Pacific islands, located northeast of Papua New Guinea.

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister...

Im Focus: Energy-saving minicomputers for the ‘Internet of Things’

The ‘Internet of Things’ is growing rapidly. Mobile phones, washing machines and the milk bottle in the fridge: the idea is that minicomputers connected to these will be able to process information, receive and send data. This requires electrical power. Transistors that are capable of switching information with a single electron use far less power than field effect transistors that are commonly used in computers. However, these innovative electronic switches do not yet work at room temperature. Scientists working on the new EU research project ‘Ions4Set’ intend to change this. The program will be launched on February 1. It is coordinated by the Helmholtz-Zentrum Dresden-Rossendorf (HZDR).

“Billions of tiny computers will in future communicate with each other via the Internet or locally. Yet power consumption currently remains a great obstacle”,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

DATE 2016 Highlighting Automotive and Secure Systems

26.01.2016 | Event News

 
Latest News

A new potential biomarker for cancer imaging

05.02.2016 | Life Sciences

Graphene is strong, but is it tough?

05.02.2016 | Materials Sciences

Tiniest Particles Shrink Before Exploding When Hit With SLAC's X-ray Laser

05.02.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>