Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bucking Conventional Wisdom, Researchers Find Black Sea Bass Tougher Than Expected


In a new study, fisheries researchers from North Carolina State University found that black sea bass (Centropristis striata) can usually survive the physical trauma that results from being hauled up from deep water then released at the surface. The finding is part of a larger study of the fish’s mortality rate, which will inform stock assessments designed to help ensure that the black sea bass fishery is sustainable.

Black sea bass are bottom-dwelling fish, and are often caught at depths of greater than 60 feet. When the fish are brought to the surface, the rapid change in pressure causes the fish’s swim bladder to expand. This forces other organs out of the way and can result in visible “barotrauma” – such as the fish’s stomach being forced partially out of its mouth.

Black sea bass with barotrauma (note stomach protruding from mouth). Click to enlarge. Photo: Jeff Buckel

Conventional wisdom long held that this sort of visible barotrauma meant that a fish would die when thrown back into the water. But that’s not true, according to the NC State study.

The research team was attempting to develop accurate estimates of “discard mortality” rates for black sea bass, meaning that they wanted to know what percentage of the fish would die if they were caught and thrown back. Discard mortality rates are used to make informed stock assessments for fish species, because it helps fisheries officials understand how many fish that are caught and released can be expected to survive. Black sea bass are a valuable species for commercial fishing and are also popular with recreational anglers. Millions of black sea bass are caught and released by recreational anglers off the south Atlantic coast of the U.S. each year.

The researchers came up with a novel method for determining the discard mortality rate for black sea bass. First, the researchers worked with a team of scuba divers to tag black sea bass in their natural habitat on the ocean floor. Then the researchers caught, tagged and released the same number of black sea bass in the same area on the same day. The fish tagged on the bottom served as a control group, since they were not subject to changes in atmospheric pressure or other injuries that could be incurred when caught and brought to the surface.

Over the next year, tagged black sea bass were caught by the researchers, or by recreational anglers or commercial fishing operations who returned the tags to the researchers. Researchers could then compare the number of tags returned from the experimental group (those tagged on the surface) to those returned from the control group (those tagged on the bottom). This allowed them to determine discard mortality rates.

The researchers had put the fish in the experimental group into one of four categories: those without visible injury; those with visible barotrauma; those with hook trauma (meaning the hook had caused significant internal injury); and “floaters” – those that couldn’t swim down into the water at all.

To their surprise, the researchers found that approximately 90 percent of the fish in the experimental group with visible barotrauma (but that weren’t floaters) survived. This was about the same survival rate as for fish that exhibited no visible injury at all. Fish with hook trauma had a survival rate of 36 percent, while floaters had a 16 percent survival rate.

“In previous work, estimates of discard mortality were limited to time periods soon after release,” says Paul Rudershausen, a research associate at NC State’s Center for Marine Sciences and Technology and lead author of a paper describing the research. “By tagging a control group, we were able to estimate the long-term effects of injuries associated with fishing.”

In addition to lending key insight into the black sea bass fishery, Rudershausen notes that the study “may give us insight into mortality for other important species with similar characteristics, such as red grouper and gag grouper.”

The paper, “Estimating reef fish discard mortality using surface and bottom tagging: effects of hook injury and barotrauma,” is forthcoming from the Canadian Journal of Fisheries and Aquatic Sciences. The paper was co-authored by Dr. Jeff Buckel and Dr. Joe Hightower, professors of applied ecology at NC State. The researchers worked closely with fisherman Tom Burgess on the project. The work was done under North Carolina Sea Grant Fishery Resource Grant projects 07-FEG-01 and 11-FEG-04.


Note to Editors: The study abstract follows.

“Estimating reef fish discard mortality using surface and bottom tagging: effects of hook injury and barotrauma”

Authors: P. J. Rudershausen, J. A. Buckel, and J.E. Hightower, North Carolina State University

Published: forthcoming, Canadian Journal of Fisheries and Aquatic Sciences

DOI: 10.1139/cjfas-2013-0337

Abstract: We estimated survival rates of discarded black sea bass (Centropristis striata) in various release conditions using tag–recapture data. Fish were captured with traps and hook and line from waters 29–34m deep off coastal North Carolina, USA, marked with internal anchor tags, and observed for release condition. Fish tagged on the bottom using SCUBA served as a control group. Relative return rates for trap-caught fish released at the surface versus bottom provided an estimated survival rate of 0.87 (95% credible interval 0.67–1.18) for surface-released fish. Adjusted for results from the underwater tagging experiment, fish with evidence of external barotrauma had a median survival rate of 0.91 (0.69–1.26) compared with 0.36 (0.17–0.67) for fish with hook trauma and 0.16 (0.08–0.30) for floating or presumably dead fish. Applying these condition-specific estimates of survival to non-tagging fishery data, we estimated a discard survival rate of 0.81 (0.62–1.11) for 11 hook and line data sets from waters 20–35m deep and 0.86 (0.67–1.17) for 10 trap data sets from waters 11–29 m deep. The tag-return approach using a control group with no fishery-associated trauma represents a method to accurately estimate absolute discard survival of physoclistous reef species.

Matt Shipman | EurekAlert!

Further reports about: Black atmospheric pressure black sea bass experimental fishing mortality species

More articles from Ecology, The Environment and Conservation:

nachricht Sea turtles face plastic pollution peril
09.10.2015 | University of Exeter

nachricht NOAA declares third ever global coral bleaching event
08.10.2015 | NOAA Headquarters

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Secure data transfer thanks to a single photon

Physicists of TU Berlin and mathematicians of MATHEON are so successful that even the prestigious journal “Nature Communications” reported on their project.

Security in data transfer is an important issue, and not only since the NSA scandal. Sometimes, however, the need for speed conflicts to a certain degree with...

Im Focus: A Light Touch May Help Animals and Robots Move on Sand and Snow

Having a light touch can make a hefty difference in how well animals and robots move across challenging granular surfaces such as snow, sand and leaf litter. Research reported October 9 in the journal Bioinspiration & Biomimetics shows how the design of appendages – whether legs or wheels – affects the ability of both robots and animals to cross weak and flowing surfaces.

Using an air fluidized bed trackway filled with poppy seeds or glass spheres, researchers at the Georgia Institute of Technology systematically varied the...

Im Focus: Reliable in-line inspections of high-strength automotive body parts within seconds

Nondestructive material testing (NDT) is a fast and effective way to analyze the quality of a product during the manufacturing process. Because defective materials can lead to malfunctioning finished products, NDT is an essential quality assurance measure, especially in the manufacture of safety-critical components such as automotive B-pillars. NDT examines the quality without damaging the component or modifying the surface of the material. At this year's Blechexpo trade fair in Stuttgart, Fraunhofer IZFP will have an exhibit that demonstrates the nondestructive testing of high-strength automotive body parts using 3MA. The measurement results are available in a matter of seconds.

To minimize vehicle weight and fuel consumption while providing the highest level of crash safety, automotive bodies are reinforced with elements made from...

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Smart clothing, mini-eyes, and a virtual twin – Artificial Intelligence at ICT 2015

13.10.2015 | Trade Fair News

Listening to the Extragalactic Radio

13.10.2015 | Physics and Astronomy

Penn study stops vision loss in late-stage canine X-linked retinitis pigmentosa

13.10.2015 | Health and Medicine

More VideoLinks >>>