Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Boat noise impacts development and survival of sea hares

31.07.2014

While previous studies have shown that marine noise can affect animal movement and communication, with unknown ecological consequences, scientists from the Universities of Bristol and Exeter and the École Pratique des Hautes Études (EPHE) CRIOBE in France have demonstrated that boat noise stops embryonic development and increases larval mortality in sea hares.

Sea hares, (specifically the sea slug Stylocheilus striatus used in this study) usually hatch from their eggs to swim away and later feed on toxic alga but this study, conducted in a coral reef lagoon in French Polynesia, found that when exposed to playback of boat noise, more eggs failed to develop and those that hatched were more likely to die.

Lead author Sophie Nedelec, a PhD researcher at the University of Bristol and EPHE said: "Traffic noise is now one of the most widespread global pollutants. If the reproductive output of vulnerable species is reduced, we could be changing communities and losing vital ecological functions. This species is particularly important because it eats a toxic alga that affects recruitment of fish to coral reefs."

Anthropogenic (man-made) noise is now recognised as a global pollutant, appearing in national and international legislation (for example, the US National Environment Policy Act and European Commission Marine Strategy Framework Directive).

Boats are found around all coastal environments where people live and the noise they make spreads far and wide. Increasingly, recent research has indicated that noise from human activities can affect the behaviour and physiology of animals, but this is the first study to show impacts on development and larval survival.

Co-author, Dr Steve Simpson, a marine biologist and senior lecturer at the University of Exeter, said: "Boat noise may cause stress or physically disrupt cells during development, affecting chances of survival. Since one in five people in the world rely on marine animals as a major source of protein, regulating traffic noise in important fisheries areas could help marine communities and the people that depend on them."

Co-author, Dr Suzanne Mills, an evolutionary biologist from CRIOBE, Perpignan said: "Our study used controlled field experiments and a split-brood, counterbalanced design to account for any possible site or genetic effects. Nearly 30,000 eggs were placed in plastic tubes. Half the eggs from each mother were near speakers playing boat noise while the other half were near speakers playing coral-reef ambient noise. Both success of embryonic development and post-hatching survival decreased by more than 20% as a consequence of exposure to boat-noise playback."

Co-author, Dr Andy Radford, a reader in behavioural ecology at the University of Bristol, said: "This is the first indication that noise pollution can affect development and survival during critical early life stages. Growing evidence for the impact of noise on animals suggests that consideration should be given to the regulation of human activities in protected areas."

The research is published today in Scientific Reports.

Hannah Johnson | Eurek Alert!
Further information:
http://www.bristol.ac.uk

Further reports about: Boat Sea hares activities alga animals eggs embryonic development toxic traffic noise

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>