Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bizarre Parasite May Provide Cuttlefish Clues

16.04.2014

University of Adelaide research into parasites of cuttlefish, squid and octopus has uncovered details of the parasites’ astonishing life cycles, and shown how they may help in investigating populations of their hosts.

Researcher Dr Sarah Catalano has described 10 new parasite species− dicyemid mesozoans −, which live in the kidneys of cephalopods (cuttlefish, squid and octopus). They are the very first dicyemid species to be described from Australian waters.

“Although dicyemid parasites have been studied by other groups, nothing has been known about dicyemid fauna and infection patterns from Australian waters,” says Dr Catalano, who this month will graduate with her PhD from the University’s School of Earth and Environmental Sciences. She will continue her work at the South Australian Museum.

The dicyemid parasites are tiny organisms, simple in appearance and made up of only 8-40 cells without any obvious tissue structure – but they do have surprisingly complex life cycles. They exist in two forms: adults are long and slender whereas embryos can be a clone of the adult only smaller, or have a distinctive circular form. They also have two modes of reproduction – sexual and asexual.

“Surprisingly, we found that the left and right kidneys of a single host individual were infected independently of each other, with one kidney infected by asexual forms and the other by sexual forms, suggesting this mechanism is parasite-controlled not host-mediated,” says Dr Catalano. This finding has been published in the journal Folia Parasitologica.

“To make their life cycle that much more complex, these parasites are also highly host-species specific. To infect a new host, the circular embryo form of the parasite is released with the host’s urine out into the sea. It then has to find a new squid or cuttlefish or octopus individual that is of the right species within a limited time-frame before it perishes, while also battling environmental conditions such as strong water currents and varying salinity.

“Somehow this tiny organism – just a few cells in size – manages this complex and highly specific reinfection and the astonishing life cycle beings again.”

This high degree of specificity means the parasites have potential use as “biological tags” to help assess population structures of cephalopods, including the iconic giant Australian cuttlefish.

“We looked at the dicyemids in two species of cuttlefish, the giant Australian cuttlefish and the nova cuttlefish, from various localities in South Australian waters,” Dr Catalano says. “We found different dicyemid species infected each cuttlefish species at different localities, suggesting there are unique populations of each host species in South Australian waters.

“As such, this offers support for the use of dicyemid parasites as biological tags and we hope to be able to use these parasites to tell us more about cephalopod population structure to assist in management plans.”

Media Contact:

Dr Sarah Catalano
PhD graduate
School of Earth and Environmental Sciences
The University of Adelaide
Phone: +61 8 8313 5513
Mobile: +61 (0) 437 574 880
sarah.catalano@adelaide.edu.au

Robyn Mills
Media and Communications Officer
The University of Adelaide
Phone: +61 8 8313 6341
Mobile: +61 410 689 084
robyn.mills@adelaide.edu.au

Robyn Mills | newswise
Further information:
http://www.adelaide.edu.au

Further reports about: Environmental cephalopods cuttlefish infected kidneys octopus parasite parasites species structure

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>