Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Bivalve Effect : New Understanding of Marine Ecology Will Enable Better Management of Resources

05.05.2010
Explaining and understanding life cycles is on many people’s minds in spring, and McGill Biologist Dr. Frédéric Guichard is no exception – in fact, he’s made a fascinating discovery relating to the life, death, reproduction and communication … of mussels.

Guichard says marine life can communicate over thousands of kilometres, calling into question current fishery management and marine preservation practices. “If I kill mussels in San Diego, it will have an impact in Seattle. We now know that populations are connected,” he said.

Using mathematical modeling and data from natural populations, Guichard and his colleagues, Dr. Tarik Gouhier and Dr. Bruce A. Menge at Oregon State University, found a phenomenon similar to the “butterfly effect,” whereby the actions of one individual can cause a series of chain reactions. Mussel populations communicate by actions such as releasing larvae or dying. “Current practices are based on the knowledge that a mussel can travel no further than 100 km in its lifespan, so efforts are focused on local areas in the belief that we can control local populations,” Guichard explains. “But this ‘fence approach’ only looks at the life history of an animal, which isn’t enough to predict how it will affect its environment and other marine life.

“We can now see what we normally don’t look for in the wild, so we can use this model to better manage their numbers. Scientists have long theorized about this, but this is the proof,” Guichard said.

The principles of their discovery should be applicable to many species and will have important ramifications in the short term for the design of marine reserves and in the longer term for fisheries management. Frédéric Guichard was funded by the James McDonnell Foundation and the research was published in the Proceedings of the National Academy of Science.

On the Web: http://falco.biol.mcgill.ca

L’effet bivalve
Une nouvelle compréhension de l’écologie marine pour une meilleure gestion des ressources

Au printemps, un grand nombre de personnes cherchent à expliquer et à comprendre les cycles de la vie. Le biologiste et professeur mcgillois Frédéric Guichard n’y fait pas exception. En effet, il a fait une découverte fascinante au sujet de la vie, de la mort, de la reproduction et de la communication…des moules. Le professeur Guichard affirme que les animaux marins communiquent sur des milliers de kilomètres, ce qui remet en question les méthodes actuelles de gestion des pêches et de préservation de la vie marine. « Si je tue des moules à San Diego, cela aura un impact à Seattle. Nous savons maintenant que les populations sont connectées », a-t-il déclaré.

Se servant d’un modèle mathématique et de données provenant de populations naturelles, le professeur Guichard et ses collègues, Tarik Gouhier, PhD, et le professeur Bruce A. Menge, de l’Université d’État de l’Oregon, ont découvert un phénomène similaire à l’« effet papillon », par lequel les actions d’un individu peuvent entraîner des réactions en chaîne. Les populations de moules communiquent par des actions comme la libération de larves ou par leur mortalité. « Les présentes pratiques sont fondées sur la connaissance qu’une moule ne peut parcourir plus de 100 kilomètres au cours de sa vie; les efforts sont par conséquent concentrés sur les régions locales où l’on croit pouvoir exercer une influence auprès des populations locales », a expliqué le professeur Guichard. « Mais cette démarche ‘isolée’ ne tient compte que de la vie d’un animal, ce qui n’est pas suffisant pour prédire comment il influencera son environnement et le reste de la vie marine. »

« Nous pouvons maintenant voir ce qu’habituellement nous ne cherchons pas dans la nature; nous pouvons par conséquent utiliser ce modèle pour mieux gérer les populations. Depuis longtemps, les scientifiques élaborent des théories sur cette question, mais nous en possédons maintenant la preuve », a déclaré le professeur Guichard.

Les principes de leur découverte devraient s’appliquer à de nombreuses espèces et auront d’importantes ramifications sur la conception de réserves marines, à court terme, et sur la gestion des pêches, à long terme. Frédéric Guichard a été financé par la Fondation James McDonnell et la recherche publiée dans les actes de l’Académie nationale des sciences.

Internet : http://falco.biol.mcgill.ca

William Raillant-Clark | Newswise Science News
Further information:
http://falco.biol.mcgill.ca
http://www.mcgill.ca

Further reports about: Bivalve Census Ecology Marine science Ressource effect marine life

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

NASA'S OSIRIS-REx spacecraft slingshots past Earth

25.09.2017 | Physics and Astronomy

MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer

25.09.2017 | Health and Medicine

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>