Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bad news for prey: New research shows that predators can learn to read camouflage

11.09.2013
Camouflaged creatures can perform remarkable disappearing acts but new research shows that predators can learn to read camouflage. The study, which used human subjects as predators searching for hidden moths in computer games, found that the subjects could learn to find some types of camouflaged prey faster than others.

The research was carried out by the University of Exeter and the University of Cambridge and is published in the journal PLOS ONE. Moths with high contrast markings - that break up the shape of the body, like that of a zebra or giraffe - were best at evading predation at the start of the experiment. However humans learnt to find these prey types faster than moths with low contrast markings that match the background, like that of a stick insect or leaf bug.

The study shows that the benefit of a camouflage strategy depends on both how well it prevents initial detection and also on how well it inhibits learning.

Lead author Dr Jolyon Troscianko from the University of Exeter said: "This is the first time that a study has focused on the learning of different camouflage types rather than how quickly camouflage prevents initial detection.

"We found considerable differences in the way that predators learn to find different types of camouflage.

"If too many animals all start to use the same camouflage strategy then predators are likely to learn to overcome that strategy more easily, so prey species should use different camouflage strategies to stay under the radar. This helps to explain why such a huge range of camouflage strategies exist in nature."

Camouflage offers a visual example of how the process of natural section works in evolution. Those prey with successful camouflage strategies evade predation, survive and reproduce giving rise to future generations of successfully camouflaged individuals. Camouflage is probably the most widespread way of preventing predation in nature and is also valuable in human military applications as well as in recreation, art and fashion.

Hunt for hidden birds in new online game

Master of disguise the African nightjar has excellent camouflage that makes it very difficult to spot. The researchers have launched an online game 'Find the nightjar' where players are challenged to search for real nightjars hidden against the background of the African bush. The results will be used to help the researchers find out about animal perception and how it differs between predator types. Take part in the online game.

This work was funded by the BBSRC and the paper is available online at: http://dx.plos.org/10.1371/journal.pone.0073733

Images available:

Simulated camouflaged moths used in the study.
Real camouflaged night jars and a range of other animals.
For further information and images contact:

Dr Martin Stevens
University of Exeter, Centre for Ecology & Conservation
martin.stevens@exeter.ac.uk
+44 (0) 1326 259358
+44 (0) 7919 372434
Dr Jo Bowler
University of Exeter Press Office
Office: +44 (0)1392 722062
Mobile: +44(0)7827 309 332
Twitter: @UoE_ScienceNews
j.bowler@exeter.ac.uk
About the University of Exeter

The Sunday Times University of the Year 2012-13, the University of Exeter is a Russell Group university and in the top one percent of institutions globally. It combines world-class research with very high levels of student satisfaction. Exeter has over 18,000 students and is ranked 7th in The Sunday Times University Guide, 10th in The Complete University Guide, 10th in the UK in The Times Good University Guide 2012 and 12th in the Guardian University Guide 2014. In the 2008 Research Assessment Exercise (RAE) 90% of the University's research was rated as being at internationally recognised levels and 16 of its 31 subjects are ranked in the top 10, with 27 subjects ranked in the top 20.

The University has four campuses. The Streatham and St Luke's campuses are in Exeter and there are two campuses in Cornwall, Penryn and Truro. In an arrangement that is unique in the UK, the Penryn Campus is owned and jointly managed with Falmouth University. At the campus, University of Exeter students can study programmes in the following areas: Animal Behaviour, Conservation Biology and Ecology, English, Environmental Sciences, Evolutionary Biology, Geography, Geology, History, Human Sciences, Mathematics and the Environment, Mining and Minerals Engineering, Politics and International Studies, Renewable Energy and Zoology.

The University has invested strategically to deliver more than £350 million worth of new facilities across its campuses in the past few years; including landmark new student services centres - the Forum in Exeter and The Exchange at Penryn – together with world-class new facilities for Biosciences, the Business School and the Environment and Sustainability Institute. There are plans for another £330 million of investment between now and 2016. http://www.exeter.ac.uk/cornwall

Jo Bowler | EurekAlert!
Further information:
http://www.exeter.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>