Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria create aquatic superbugs in waste treatment plants

14.05.2009
For bacteria in wastewater treatment plants, the stars align perfectly to create a hedonistic mating ground for antibiotic-resistant superbugs eventually discharged into streams and lakes.

In the first known study of its kind, Chuanwu Xi of the University of Michigan School of Public Health and his team sampled water containing the bacteria Acinetobacter at five sites in and near Ann Arbor's wastewater treatment plant.

They found the so-called superbugs—bacteria resistant to multiple antibiotics—up to 100 yards downstream from the discharge point into the Huron River. Xi stresses that while the finding may be disturbing, it is important to understand that much work is still needed to assess what risk, if any, the presence of superbugs in aquatic environments poses to humans.

"We still need to understand the link between aquatic and human multiple drug resistant bacteria," said Xi, assistant professor of public health.

Xi and colleagues found that while the total number of bacteria left in the final discharge effluent declined dramatically after treatment, the remaining bacteria was significantly more likely to resist multiple antibiotics than bacteria in water samples upstream. Some strains resisted as many as seven of eight antibiotics tested. The bacteria in samples taken 100 yards downstream also were more likely to resist multiple drugs than bacteria upstream.

"Twenty or 30 years ago, antibiotics would have killed most of these strains, no problem," he said.

Multiple antibiotic-resistant bacteria has emerged as one of the top public health issues worldwide in the last few decades as the overuse of antibiotics and other factors have caused bacteria to become resistant to common drugs. Xi's group chose to study Acinetobacter because it is a growing cause of hospital-acquired infections and because of its ability to acquire antibiotic resistance.

Xi said the problem isn't that treatment plants don't do a good job of cleaning the water—it's that they simply aren't equipped to remove all antibiotics and other pharmaceuticals entering the treatment plants.

The treatment process is fertile ground for the creation of superbugs because it encourages bacteria to grow and break down the organic matter. However, the good bacteria grow and replicate along with the bad. In the confined space, bacteria share resistant genetic materials, and remaining antibiotics and other stressors may select multi-drug resistant bacteria.

While scientists learn more about so-called superbugs, patients can do their part by not insisting on antibiotics for ailments that antibiotics don't treat, such as a common cold or the flu, Xi said. Also, instead of flushing unused drugs, they should be saved and disposed of at designated collection sites so they don't enter the sewer system.

The next step, said Xi, is to see how far downstream the superbugs survive and try to understand the link between aquatic and human superbugs. This study did not look past 100 yards.

Xi's colleagues include visiting scholar Yongli Zhang; Carl Marrs, associate professor of public health; and Carl Simon, professor of mathematics.

School of Public Health's Department of Environmental Health Sciences: www.sph.umich.edu/ehs

The University of Michigan School of Public Health (www.sph.umich.edu) has worked to promote health and prevent disease since 1941, and is consistently ranked among the top five public health schools in the nation.

Laura Bailey | EurekAlert!
Further information:
http://www.umich.edu

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>