Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Arizona State University archaeologist models past and future landscapes

Archaeology is a vital tool in understanding the long-term consequences of human impact on the environment. Computational modeling can refine that understanding. But according to Arizona State University archaeologist C. Michael Barton, it takes a revolution in thought, along with the newest methods of modeling, to produce a comprehensive picture of the past that can help inform land-use decisions for our future.

Barton, a professor in ASU's School of Human Evolution and Social Change, will discuss "Looking for the Future in the Past: Long-Term Change in Socioecological Systems" at the annual meeting of the American Association for the Advancement of Science on Feb. 20.

"We have lots of information in the archaeological record, but it actually represents a tiny fraction of what people used, which represents a small portion of how people lived," Barton explained. "We have artifacts from this point in time and that point in time, but we don't know what people used or how they lived in the interim. So we are left with connecting the dots and making inferences."

Enter computational modeling, which can help fill in the gaps with quantitative estimates by taking into account what we know about people based on sociology, economics, anthropology and other fields. But Barton isn't convinced that a computer can do a better job at such guesswork than archaeologists.

"We must use these tools but also change the way we think about the archaeological record," he said. "When formal and computational modeling is used to experimentally simulate human socioecological dynamics, the empirical archaeological record can be used to validate and improve dynamic models of long-term change."

Considered a pioneer in the area of archaeological applications of computational modeling, Barton helms the Mediterranean Landscape Dynamics project, which is an example of using the past to develop and test decision-support models regarding interactions between land use and landscape evolution. At the AAAS meeting, he will present the project's findings from an agrarian region of northern Jordan.

Barton's team set up experiments that yielded expected and unexpected results. Among the expected findings were that shifting (or "swidden") cultivation produced more erosion than farming and fertilizing the same field repeatedly, and larger settlements had a greater impact on the land than smaller ones. Unexpectedly, the team found that in smaller communities, shifting cultivation and grazing can increase productivity because soil lost due to erosion from grazing can accumulate in farmed areas; however, when those hamlets grow, the same practices can cause soil loss throughout the land used by a village, leading to a significant drop in productivity. In fact, the archaeological record of northern Jordan shows the earliest farming communities experienced the kinds of impacts predicted by the modeling experiments.

Barton is a co-founder of the Center for Social Dynamics and Complexity in ASU's College of Liberal Arts and Sciences; the Open Agent Based Modeling Consortium; and the Network for Computational Modeling in Socio-Ecological Sciences, a National Science Foundation-funded network designed to provide modeling resources and training to the international community of social scientists. His publications include five books and monographs and numerous articles in journals such as Evolutionary Anthropology, Ecology and Society, American Antiquity, Philosophical Transactions of the Royal Society and the Journal of Anthropological Research.

Title of Presentation: Looking for the Future in the Past: Long-Term Change in Socioecological Systems
Session Modeling Across Millennia: Interdisciplinary Paths to Ancient Socionatural Systems
Time: Sunday, Feb. 20, 1:30-4:30 p.m.
Room: 146B Washington Convention Center
Related article featured in Philosophical Transactions of the Royal Society A (
College of Liberal Arts and Sciences (
School of Human Evolution and Social Change (
Center for Social Dynamics and Complexity (
Open Agent Based Modeling Consortium (
Tempe, Arizona USA

Carol Hughes | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>