Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arizona State University archaeologist models past and future landscapes

21.02.2011
Archaeology is a vital tool in understanding the long-term consequences of human impact on the environment. Computational modeling can refine that understanding. But according to Arizona State University archaeologist C. Michael Barton, it takes a revolution in thought, along with the newest methods of modeling, to produce a comprehensive picture of the past that can help inform land-use decisions for our future.

Barton, a professor in ASU's School of Human Evolution and Social Change, will discuss "Looking for the Future in the Past: Long-Term Change in Socioecological Systems" at the annual meeting of the American Association for the Advancement of Science on Feb. 20.

"We have lots of information in the archaeological record, but it actually represents a tiny fraction of what people used, which represents a small portion of how people lived," Barton explained. "We have artifacts from this point in time and that point in time, but we don't know what people used or how they lived in the interim. So we are left with connecting the dots and making inferences."

Enter computational modeling, which can help fill in the gaps with quantitative estimates by taking into account what we know about people based on sociology, economics, anthropology and other fields. But Barton isn't convinced that a computer can do a better job at such guesswork than archaeologists.

"We must use these tools but also change the way we think about the archaeological record," he said. "When formal and computational modeling is used to experimentally simulate human socioecological dynamics, the empirical archaeological record can be used to validate and improve dynamic models of long-term change."

Considered a pioneer in the area of archaeological applications of computational modeling, Barton helms the Mediterranean Landscape Dynamics project, which is an example of using the past to develop and test decision-support models regarding interactions between land use and landscape evolution. At the AAAS meeting, he will present the project's findings from an agrarian region of northern Jordan.

Barton's team set up experiments that yielded expected and unexpected results. Among the expected findings were that shifting (or "swidden") cultivation produced more erosion than farming and fertilizing the same field repeatedly, and larger settlements had a greater impact on the land than smaller ones. Unexpectedly, the team found that in smaller communities, shifting cultivation and grazing can increase productivity because soil lost due to erosion from grazing can accumulate in farmed areas; however, when those hamlets grow, the same practices can cause soil loss throughout the land used by a village, leading to a significant drop in productivity. In fact, the archaeological record of northern Jordan shows the earliest farming communities experienced the kinds of impacts predicted by the modeling experiments.

Barton is a co-founder of the Center for Social Dynamics and Complexity in ASU's College of Liberal Arts and Sciences; the Open Agent Based Modeling Consortium; and the Network for Computational Modeling in Socio-Ecological Sciences, a National Science Foundation-funded network designed to provide modeling resources and training to the international community of social scientists. His publications include five books and monographs and numerous articles in journals such as Evolutionary Anthropology, Ecology and Society, American Antiquity, Philosophical Transactions of the Royal Society and the Journal of Anthropological Research.

PRESENTATION INFORMATION
Title of Presentation: Looking for the Future in the Past: Long-Term Change in Socioecological Systems
Session Modeling Across Millennia: Interdisciplinary Paths to Ancient Socionatural Systems
Time: Sunday, Feb. 20, 1:30-4:30 p.m.
Room: 146B Washington Convention Center
USEFUL WEBSITES
Related article featured in Philosophical Transactions of the Royal Society A (http://rsta.royalsocietypublishing.org/content/368/1931/5275.full)
ARIZONA STATE UNIVERSITY (www.asu.edu)
College of Liberal Arts and Sciences (http://clas.asu.edu)
School of Human Evolution and Social Change (http://www.shesc.asu.edu)
Center for Social Dynamics and Complexity (http://cbcs.asu.edu)
Open Agent Based Modeling Consortium (http://www.openabm.org)
Tempe, Arizona USA

Carol Hughes | EurekAlert!
Further information:
http://www.asu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Scientists on the road to discovering impact of urban road dust
18.01.2018 | University of Alberta

nachricht Gran Chaco: Biodiversity at High Risk
17.01.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>