Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new view of oceanic phytoplankton

11.03.2009
University of Hawaii at Manoa researchers involved in novel strategy

Phytoplankton comprise the forests of the sea, and are responsible for providing nearly half of the oxygen that sustains life on Earth including our own. However, unlike their counterparts on land, the marine plants are nearly exclusively microscopic in size, and mostly out of human sight.

Consequently, we are still in a very early stage of understanding even the most basic aspects of phytoplankton biology and ecology.

In a new paper published in Nature, an international team of scientists, including two University of Hawaii at Manoa (UHM) microbial oceanographers, describe a novel strategy for phytoplankton growth in the vast nutrient-poor habitats of tropical and subtropical seas. The research team was led by Benjamin Van Mooy of the Woods Hole Oceanographic Institution on Cape Cod, MA, with key contributions by UHM scientists Michael Rappé and David Karl of the School of Ocean and Earth Science and Technology (SOEST) and UH's new Center for Microbial Oceanography (C-MORE).

Until now, it was thought that all cells are surrounded by membranes containing molecules called phospholipids – oily compounds that contain phosphorus, as well as other basic elements including carbon and nitrogen. These phospholipids are fundamental to the structure and function of the cell and for this reason had been thought to be an indispensable component of life. Phospholipids are one of several classes of molecules that contain the element phosphorus, which has been shown to be in very short supply in many marine ecosystems. The deep sea contains ample phosphorus but delivery to the surface waters where photosynthesis occurs is limited by temperature-induced stratification and the inability to mix the ocean to depths where phosphorus is available. Indeed, research conducted at Station ALOHA near Hawaii during the past two decades has shown that phosphorus is rapidly becoming less abundant in the stratified regions of the North Pacific Ocean, possibly a result of changes in the marine habitat due to greenhouse gas warming.

Van Mooy and colleagues discovered that phytoplankton in the open ocean may be adapting to the low levels of phosphorus by making a fundamental change to their cell structure. Rather than synthesizing the phosphorus-requiring phospholipids for use in their membranes, the plants appear to be using non-phosphorus containing "substitute lipids" that use the nearly unlimited element sulfur also found in seawater instead of phosphorus. These substitute sulfolipids apparently allow the plants to continue to grow and survive under conditions of phosphorus stress, a unique strategy for life in the sea.

To test the generality of this biochemical strategy, the authors compared the response of the phytoplankton communities in different ocean basins that experience varying levels of phosphorus stress. In regions where phosphorus stress is extreme, such as the area dubbed the Sargasso Sea in the central North Atlantic Ocean, phospholipids were nearly nonexistent. By comparison, in the South Pacific Ocean, where sufficient phosphorus exists, there were large amounts of phospholipids. The region around Hawaii was intermediate, which is consistent with the long-term data sets from the Hawaii Ocean Time-series program showing that phosphorus is still measurable but is disappearing from the surface waters at an alarming rate. One prediction from this initial study is that the phytoplankton in Hawaiian waters are likely to become more like those in the Sargasso Sea over time as phosphorus supplies dwindle further. To date, the ability to synthesize substitute lipids appears to be restricted to the phytoplankton; heterotrophic bacteria and other organisms must have a different strategy for survival, or none at all. This has implications for the future structure, biodiversity and function of Hawaiian marine ecosystems, including fish production and long-term carbon dioxide sequestration.

This research will continue as part of C-MORE's stated mission to understand life in the marine environment from "genomes to biomes" (http://cmore.soest.hawaii.edu).

Tara Hicks Johnson | EurekAlert!
Further information:
http://www.hawaii.edu

More articles from Ecology, The Environment and Conservation:

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>