Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A tool to assess the risk of desertification

10.10.2008
Researchers from the Universidad Politécnica de Madrid (UPM) have established a method based on dynamic simulation models to define the indicators for the risk of desertification of a particular region in the long term, thus forecasting whether or not the current situation is sustainable.

Using a general model of desertification, researchers from the Escuela Técnica Superior de Ingenieros Agrónomos of the Universidad Politécnica de Madrid managed by Javier Ibáñez have developed indicators that predict the future state of an area and hence the sustainability of the current situation. This general desertification model is used as a virtual laboratory where it is possible to reproduce the different syndromes of desertification, such as overgrazing and overdrafting of aquifers.

Desertification has been described as the biggest environmental and socioeconomic problem faced by many countries all over the world. In arid regions, the cause of the problem is mainly the way the land is used. The definition that is most extended and that was approved by the United Nations in 1994 is that desertification is the degradation of land in arid, semi-arid, sub-humid and dry areas resulting from different factors such as climatic variations and human activities.

There are two ways to fight desertification. One of them consists in cancelling out the effects it causes, which is very expensive considering all the investments required to restore lost fertility to the ground. The other is to anticipate the problem, since during its initial stages it can still be managed and turned around. In this sense, the diverse existing methods seek to detect the early symptoms of degradation.

The traditional indicators, based on physical measurements such as plant density and erosion rates, are precise but have two serious inconveniences. Firstly, since they measure characteristics of desertification, they give information about an on going process without providing information about the long term result of such processes. The second drawback is that they often focus on very particular characteristics of the landscape, such as certain plant species, making these techniques hard to export to other territories.

The proposed tool aims to complete the information offered by the conventional indicators with simulations that would virtually reproduce the threatened environments, allowing for the development of specific indicators that would sound an alarm when critical thresholds representing long term desertification effects are reached.

In particular, the study carried out by the researchers from the Universidad Politécnica de Madrid consists of the development of a set of generic equations that represent different desertification syndromes. The model, constructed by means of systems dynamics, links physical and socioeconomic processes. This implies that phenomenons like aquifer salinisation or soil degradation can be studied along with the benefits for the farmers and their opportunity costs.

The procedure is born with the goal of estimating the risk of desertification in any part of the world, including regions where field data is non existent and it is for this purpose that it has been designed. Up to now, it has been applied to the field of Dalías (Almería) and its system of coastal aquifers, the grazing grounds of Lagadas (Greece) or the oases at Morocco and Tunisia.

Currently this method is being used to study the erosion of the olive plantations in Andalusia and their impact of livestock in grazing lands in Senegal.

(*) ECOLOGICAL MODELLING 213 (2): 180-190 MAY 10 2008: “Assessing desertification risk using system stability condition analysis”

Ibáñez, Javier; Martínez Valderrama, Jaime; Puigdefabregas, Juan

Ciencia y Sociedad | alfa
Further information:
http://www.upm.es

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>