Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A river ran through it

18.10.2010
Nature and humans leaving mark on rivers and streams, affecting aquatic food webs

Rivers and streams supply the lifeblood to ecosystems across the globe, providing water for drinking and irrigation for humans as well as a wide array of life forms from single-celled organisms up to the fish humans eat.


A now dry Colorado River delta branches into the Baja/Sonoran Desert near the Sea of Cortez. Credit: Pete McBride


But humans and nature itself are making it tough on rivers to continue in their central role to support fish species, according to new research by a team of scientists including John Sabo, a biologist at Arizona State University.

Globally, rivers and streams are being drained due to human use and climate change. These and other human impacts alter the natural variability of river flows.

Some affected rivers have dried and no longer run, while others have seen increases in the variability of flows due to storm floods.

The result is that humans and nature are conspiring to shorten food chains, particularly by eliminating top predators like many large-bodied fish.

"Floods and droughts shorten the food chain, but they do it in different ways," said Sabo.

Sabo is the lead author of a paper reporting results of a study of 36 rivers in this week's issue of the journal Science.

"The length of food chains is a crucial determinate of the functioning of ecosystems," says Alan Tessier, program director in the National Science Foundation (NSF)'s Division of Environmental Biology, which funded the research.

"Ecologists have long sought to explain why food chain length varies among different ecosystems. This study provides a quantitative answer to that question for stream ecosystems, and provides critical evidence for the importance of flow variation."

High flows "take out the middle men in the food web, making fish [the top predator] feed lower in the food chain," said Sabo. "Droughts completely knock out the top predator."

"The result is a simpler food web, but the effects we see for low flows are more catastrophic for fish--and are long-lasting."

Sabo and co-authors--Jacques Finlay, University of Minnesota, St. Paul; Theodore Kennedy, U.S. Geological Survey, Southwest Biological Science Center, Flagstaff, Ariz.; and David Post, Yale University, New Haven, Conn.--suggest that the fate of large-bodied fishes should be more carefully factored into the management of water use, especially as growing human populations and climate change affect water availability.

The researchers studied rivers and streams in the U.S. ranging in size from the Mississippi and Colorado Rivers, down to small tributaries.

The rivers provide water to large cities like New York City, Minneapolis, Phoenix, Las Vegas and Los Angeles.

The study employed naturally occurring stable isotopes of the element nitrogen to measure how top-predators were faring in the food chain.

Nitrogen provides an indicator as it bioaccumulates, increasing by 3.4 parts per million with each link in the food chain.

"Floods simplify the food web by taking out some of the intermediate players so the big fish begin to eat lower on the chain," Sabo said.

"With droughts, it's completely different: droughts eliminate the top predator altogether because many fish can't tolerate the low oxygen and high temperatures that result when a stream starts drying out."

He added that climate change will play a growing role in coming years.

"Climate is giving us a new set of operating terms to work with," Sabo said. "We will experience overall drying and greater weather variability, both of which will shorten river food chains.

There will be drying in some regions, particularly along the equator, and increased flow in some rivers, primarily at higher latitudes, scientists believe.

"We will see more variability because there will be change in the seasonality of storms," said Sabo. "Ocean currents are changing, and the way the ocean blows storms our way is going to be different."

The human effect on rivers and streams, and the food chain they support, is closely tied to land-use change, such as water diversion and regulation of flows due to dams.

Sabo outlined a classic scenario that humans face during drought years.

As drought takes hold, the need for water for irrigation and agriculture increases and leads to a draw-down of natural river flows.

The effects downstream can be devastating.

"We would not have guessed that the infrequent drought that results would have a big effect on a stream, but our results show that it does," Sabo said.

"Some streams affected by drying five to ten years ago are still missing large-bodied fishes, compared with same-sized streams that never dried.

"Food webs can recover sooner after a flood, in roughly a year, but it takes far longer to recover in the case of drying or drought."

The study hints that competing users of a river's water--for agricultural production and recreational uses like fishing--need to work out amenable uses of rivers and streams that not only look to the immediate future, but also project long-term effects.

"The question becomes: can you have fish and tomatoes on the same table?" Sabo asked.

"They compete for the same resources, and society depends on both: agriculture for grain, fruits, vegetables, and fish for protein, particularly in the developing world.

"Humans may need to make hard decisions about how to allocate water so that we grow the right food, but still leave enough in rivers to sustain fish populations."

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

Further reports about: Rivers Sabo Science TV fish population floods food chain single-celled organism

More articles from Ecology, The Environment and Conservation:

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>