Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A resourceful approach to climate research: Alpine ibex horns and old hay shed light on how grassland reacts to climate change

09.12.2009
How do plant ecosystems react to rising concentrations of the greenhouse gas CO2 in the atmosphere over the long term? This fundamental question is becoming increasingly pressing in light of global climate change.

Researchers from the Chair of Grassland Science at the Technische Universität München (TUM) have now - for the first time worldwide - taken up this issue for grasslands. The scientists found their answers in two unlikely places: in horns of Alpine ibex from Switzerland and in 150-year-old hay from England.

Researchers studying the reactions of trees to rising CO2 concentration in the atmosphere have it easy. Since trees store the carbon they absorb in wood, all they need to do is take core samples from tree trunks. A centenarian oak will reveal how it coped with the incipient climate change over a period of a hundred years in its annual rings. "However, the grassland vegetation we work with is grazed or dies off in a matter of months and decomposes," explains Prof. Hans Schnyder, who is doing research in the field of grasslands at the Center for Life and Food Sciences Weihenstephan at the TUM. The Swiss scientist nonetheless wanted to establish out how economically grasslands deal with water when temperatures rise and the carbon dioxide concentration in the air increases.

Important in this context is that all plants absorb CO2 from the atmosphere. At the same time they transpire water vapor to cool their sunlit leaves. Both processes run via the stomata, tiny pores in the leaves, the opening size of which plants can regulate. During longer periods of drought plants close the stomata to curb water loss, albeit at the expense of CO2 absorption. Laboratory experiments show that, for a given stoma aperture, an artificial increase of ambient CO2 leads to a temporary increase in the absorption capacity for the gas. However, to ascertain the actual change of water use efficiency in grassland vegetation over the course of the last century, Prof. Schnyder had to find grassland time series comparable in length to those of trees.

This is where the team turned their sights to the Alpine ibex horn collection at the Museum of Natural History in Bern. Ibex store isotopic information in their horns that reflects the water use of the vegetation they consume. The TUM researchers went at the museum collection, which covers the years 1938 to 2006, with a carving knife, to remove tiny samples from the horns. Since ibex horns also have annual rings, the grassland researchers were able to use the samples to draw conclusions about temporal changes in the grassland vegetation of the Bernese Alps where the ibex had grazed.

A unique specimen archive at the research station Rothamsted in England eventually enabled a comparison with a second grassland region. The "Park Grass Experiment" - the longest running ecological grassland experiment worldwide - was initiated in Rothamsted over 150 years ago. Since 1857 specimens have been archived there to allow future generations of scientists to gain long-term insights into the local ecosystem using modern research methods. And indeed, the TUM scientists were able to benefit from the hay specimens dating as far back as 150 years. Once again analyzing the isotope signature, they could infer how the English grassland vegetation had utilized the water over the years.

The Weihenstephan researchers thus determined the individual isotope composition of the grassland vegetation in both the Bernese Alps and in the British lowlands over extended periods of time: more than 69 years based on the horns, and as far back as 150 years using the hay specimens. In a second step this data was lined up with climate data, e.g. air temperature and aridity, of the respective region. The result: In both locations the intrinsic water-use efficiency of the grassland vegetation rose over the years. This implies that the plants improved their water storage potential as temperatures rose and the level of CO2 in the atmosphere increased. Based on these results the TUM scientists have now, for the first time ever, managed to demonstrate the long-term effects of anthropogenic climate change on the water-use efficiency of grasslands.

There were, however, also differences between the two locations. In Switzerland the effective water-use efficiency of the Alpine meadows remained unchanged in spite of the increased intrinsic water-use efficiency of the grassland. This was because, overall, the air had become drier and warmer as a result of the climate change. In England the scientists found evidence for this effect only during the fall. In the spring though - which in Rothamsted is no drier today than it was 150 years ago - the water storage potential of grassland vegetation had a real effect. This insight will help to further improve climate simulations. In the past, complex simulation models that included vegetation had to rely on estimates where grassland was concerned. The scientists at the TU München have now succeeded in prying open this climate research black box.

Contact:
Prof. Hans Schnyder
Chair of Grassland Science
Center of Life and Food Sciences
Technische Universität München
Tel. 08161 / 71-5165
E-Mail: schnyder@wzw.tum.de
http://www.wzw.tum.de/gruenland
Free Pictures:
http://mediatum2.ub.tum.de/?cunfold=829388&dir=829388&id=829388
Literature:
Barbosa ICR, Köhler I, Auerswald K, Lüps P, Schnyder H (2009) Last-century changes of alpine grassland water-use efficiency - a reconstruction through carbon isotope analysis of a time-series of Capra ibex horns. Global Change Biology, DOI: 10.1111/j.1365-2486.2009.02018.x

Köhler IH, Poulton PR, Auerswald K, Schnyder H (2009) Intrinsic water-use efficiency of temperate semi-natural grassland has increased since 1857: an analysis of carbon isotope discrimination of herbage from the Park Grass Experiment. Global Change Biology, DOI: 10.1111/j.1365-2486.2009.02067.x

Barbosa ICR, Kley M, Schäufele R, Auerswald K, Schröder W, Filli F, Hertwig S, Schnyder H (2009) Analysing the isotopic life history of the alpine ungulates Capra ibex and Rupicapra rupicapra rupicapra through their horns. Rapid Communications in Mass Spectrometry (RCM) 23, 2347-2356.

Dr. Ulrich Marsch | idw
Further information:
http://www.wzw.tum.de/gruenland

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>