Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A resourceful approach to climate research: Alpine ibex horns and old hay shed light on how grassland reacts to climate change

09.12.2009
How do plant ecosystems react to rising concentrations of the greenhouse gas CO2 in the atmosphere over the long term? This fundamental question is becoming increasingly pressing in light of global climate change.

Researchers from the Chair of Grassland Science at the Technische Universität München (TUM) have now - for the first time worldwide - taken up this issue for grasslands. The scientists found their answers in two unlikely places: in horns of Alpine ibex from Switzerland and in 150-year-old hay from England.

Researchers studying the reactions of trees to rising CO2 concentration in the atmosphere have it easy. Since trees store the carbon they absorb in wood, all they need to do is take core samples from tree trunks. A centenarian oak will reveal how it coped with the incipient climate change over a period of a hundred years in its annual rings. "However, the grassland vegetation we work with is grazed or dies off in a matter of months and decomposes," explains Prof. Hans Schnyder, who is doing research in the field of grasslands at the Center for Life and Food Sciences Weihenstephan at the TUM. The Swiss scientist nonetheless wanted to establish out how economically grasslands deal with water when temperatures rise and the carbon dioxide concentration in the air increases.

Important in this context is that all plants absorb CO2 from the atmosphere. At the same time they transpire water vapor to cool their sunlit leaves. Both processes run via the stomata, tiny pores in the leaves, the opening size of which plants can regulate. During longer periods of drought plants close the stomata to curb water loss, albeit at the expense of CO2 absorption. Laboratory experiments show that, for a given stoma aperture, an artificial increase of ambient CO2 leads to a temporary increase in the absorption capacity for the gas. However, to ascertain the actual change of water use efficiency in grassland vegetation over the course of the last century, Prof. Schnyder had to find grassland time series comparable in length to those of trees.

This is where the team turned their sights to the Alpine ibex horn collection at the Museum of Natural History in Bern. Ibex store isotopic information in their horns that reflects the water use of the vegetation they consume. The TUM researchers went at the museum collection, which covers the years 1938 to 2006, with a carving knife, to remove tiny samples from the horns. Since ibex horns also have annual rings, the grassland researchers were able to use the samples to draw conclusions about temporal changes in the grassland vegetation of the Bernese Alps where the ibex had grazed.

A unique specimen archive at the research station Rothamsted in England eventually enabled a comparison with a second grassland region. The "Park Grass Experiment" - the longest running ecological grassland experiment worldwide - was initiated in Rothamsted over 150 years ago. Since 1857 specimens have been archived there to allow future generations of scientists to gain long-term insights into the local ecosystem using modern research methods. And indeed, the TUM scientists were able to benefit from the hay specimens dating as far back as 150 years. Once again analyzing the isotope signature, they could infer how the English grassland vegetation had utilized the water over the years.

The Weihenstephan researchers thus determined the individual isotope composition of the grassland vegetation in both the Bernese Alps and in the British lowlands over extended periods of time: more than 69 years based on the horns, and as far back as 150 years using the hay specimens. In a second step this data was lined up with climate data, e.g. air temperature and aridity, of the respective region. The result: In both locations the intrinsic water-use efficiency of the grassland vegetation rose over the years. This implies that the plants improved their water storage potential as temperatures rose and the level of CO2 in the atmosphere increased. Based on these results the TUM scientists have now, for the first time ever, managed to demonstrate the long-term effects of anthropogenic climate change on the water-use efficiency of grasslands.

There were, however, also differences between the two locations. In Switzerland the effective water-use efficiency of the Alpine meadows remained unchanged in spite of the increased intrinsic water-use efficiency of the grassland. This was because, overall, the air had become drier and warmer as a result of the climate change. In England the scientists found evidence for this effect only during the fall. In the spring though - which in Rothamsted is no drier today than it was 150 years ago - the water storage potential of grassland vegetation had a real effect. This insight will help to further improve climate simulations. In the past, complex simulation models that included vegetation had to rely on estimates where grassland was concerned. The scientists at the TU München have now succeeded in prying open this climate research black box.

Contact:
Prof. Hans Schnyder
Chair of Grassland Science
Center of Life and Food Sciences
Technische Universität München
Tel. 08161 / 71-5165
E-Mail: schnyder@wzw.tum.de
http://www.wzw.tum.de/gruenland
Free Pictures:
http://mediatum2.ub.tum.de/?cunfold=829388&dir=829388&id=829388
Literature:
Barbosa ICR, Köhler I, Auerswald K, Lüps P, Schnyder H (2009) Last-century changes of alpine grassland water-use efficiency - a reconstruction through carbon isotope analysis of a time-series of Capra ibex horns. Global Change Biology, DOI: 10.1111/j.1365-2486.2009.02018.x

Köhler IH, Poulton PR, Auerswald K, Schnyder H (2009) Intrinsic water-use efficiency of temperate semi-natural grassland has increased since 1857: an analysis of carbon isotope discrimination of herbage from the Park Grass Experiment. Global Change Biology, DOI: 10.1111/j.1365-2486.2009.02067.x

Barbosa ICR, Kley M, Schäufele R, Auerswald K, Schröder W, Filli F, Hertwig S, Schnyder H (2009) Analysing the isotopic life history of the alpine ungulates Capra ibex and Rupicapra rupicapra rupicapra through their horns. Rapid Communications in Mass Spectrometry (RCM) 23, 2347-2356.

Dr. Ulrich Marsch | idw
Further information:
http://www.wzw.tum.de/gruenland

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>