Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

70 percent of beaches eroding on Hawaiian islands Kauai, Oahu, and Maui

08.05.2012
An assessment of coastal change over the past century has found 70 percent of beaches on the islands of Kaua'i, O'ahu, and Maui are undergoing long-term erosion, according to a U.S. Geological Survey (USGS) and University of Hawai'i (UH) report released today.

Scientists from the USGS and the School of Ocean and Earth Science and Technology (SOEST) at UH studied more than 150 miles of island coastline (essentially every beach) and found the average rate of coastal change – taking into account beaches that are both eroding and accreting – was 0.4 feet of erosion per year from the early 1900s to 2000s. Of those beaches eroding, the most extreme case was nearly 6 feet per year near Kualoa Point, East O'ahu.


The shoreline along Makapuu Point, Oahu, Hawaii, was included in the study released today.

Credit: Brad Romine, University of Hawaii Sea Grant/ Hawaii Department of Land and Natural Resources

"The inevitable fate of the Hawaiian Islands millions of years into the future is seen to the northwest in the spires of French Frigate Shoals and the remnants of other once mighty islands, ancestors of today's Hawaii, but now sunken beneath the sea through the forces of waves, rivers, and the slow subsidence of the seafloor," explained USGS Director Marcia McNutt.

"These data have allowed State and County agencies in Hawai'i to account for shoreline change as early as possible in the planning and development process so that coastal communities and public infrastructure can be sited safely away from erosion hazards areas," said William J. Aila Jr., Chairperson, Department of Land and Natural Resources, State of Hawai'i. "This will vastly improve upon public safety and will ensure that Hawaii's beautiful beaches will be protected from inappropriate shoreline development."

Of the three islands, Maui beaches experienced the highest rates and greatest extent of beach erosion with 85% of beaches eroding. Erosion is the dominant trend of coastal change on all three islands with 71% of beaches eroding on Kaua'i and 60% of beaches eroding on O'ahu.

The researchers found that, although Hawai'i beaches are dominated by erosion as a whole, coastal change is highly variable along the shore – with 'cells' of erosion and accretion typically separated by 100s of feet on continuous beaches or by rocky headlands that divide the coast into many small embayments. Most Hawaii beaches are composed of a mix of sediment derived from adjacent reefs and from the volcanic rock of the islands. Sediment availability and transport are important factors in shoreline change, and human interference in natural processes appears to have impacted the measured rates of change. For example, more than 13 miles of beaches in the study were completely lost to erosion – nearly all previously in front of seawalls.

"Over a century of building along the Hawaiian shoreline, without this sort of detailed knowledge about shoreline change, has led to some development that is located too close to the ocean," said Dr. Charles Fletcher, UH Geology and Geophysics Professor and lead author. "A better understanding of historical shoreline change and human responses to erosion may improve our ability to avoid erosion hazards in the future."

The researchers used historical data sources such as maps and aerial photographs to measure shoreline change at more than 12,000 locations. Shoreline changes are measured in specialized Geographic Information System (GIS) software.

This analysis of past and present trends of shoreline movement is designed to allow for future repeatable analyses of shoreline movement, coastal erosion, and land loss. "The results of this research provide critical coastal change information that can be used to inform a wide variety of coastal management decisions," said Dr. Rob Thieler, sponsor of the study with the USGS.

The research was also supported by grants from a number of federal, state, and county agencies as well as non-profit organizations. The report, titled "National Assessment of Shoreline Change: Historical Shoreline Change in the Hawaiian Islands," is the sixth report produced as part of theUSGS's National Assessment of Shoreline Change project, which already includes the U.S. Gulf of Mexico and Atlantic coasts, as well as California. An accompanying report that provides the GIS data used to conduct the Hawaii coastal change analysis is being released simultaneously.

Research Contact:
Charles (Chip) Fletcher, 808.956.9513, fletcher@soest.hawaii.edu

Marcie Grabowski | EurekAlert!
Further information:
http://www.hawaii.edu

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>