Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

1 in 5 streams damaged by mine pollution in southern West Virginia

31.07.2012
Water pollution from surface coal mining has degraded more than 22 percent of streams and rivers in southern West Virginia to the point they may now qualify as impaired under state criteria, according to a new study by scientists at Duke and Baylor.

The study, published this week in the peer-reviewed journal Environmental Science & Technology, documents substantial losses in aquatic insect biodiversity and increases in salinity linked to sulfates and other pollutants in runoff from mines often located miles upstream.

"Our findings offer concrete evidence of the cumulative impacts surface mining is having on a regional scale," said Emily S. Bernhardt, associate professor of biogeochemistry at Duke's Nicholas School of the Environment. "The relationship is clear and direct. The more mining you have upstream, the higher the biological loss and salinity levels will be downstream, and the farther they will extend."

Numerous recent studies have demonstrated the water-quality problems caused at or near the site of individual surface coal mines, Bernhardt noted. She and her team "set out to understand how the large and growing number of surface mines is affecting water quality throughout Appalachia."

They used NASA satellite images and computer data to map the extent of surface mining taking place across a 12,000-square-mile area of the southern West Virginia coalfields between 1976 and 2005.

They found that companies had converted more than five percent of the land into mine sites and buried 480 miles of streams beneath adjacent valley fills during this period.

Chemical and biological data from 223 streams sampled by the West Virginia Department of Environmental Protection between 1997 and 2007 were combined with mapping to help the researchers determine that pollution runoff from the mines could substantially degrade more than 1,400 miles of streams in the region. That's four times the length of streams buried by the valley fills.

"It's important to recognize that surface coal mining pollution doesn't stop at mine-permit boundaries," said Brian D. Lutz, a postdoctoral associate in Bernhardt's lab.

"Our analysis suggests that mining only five percent of the land surface is degrading between 22 percent and 32 percent of the region's rivers," he said.

Substantial declines in insect diversity began to occur when companies had mined as little as one percent of upstream land, the analysis showed. In areas where companies had converted about five percent of the land into mines, sensitive species such as mayflies and stoneflies had vanished or declined to an extent that the streams would qualify as biologically impaired under criteria set by the state of West Virginia.

The designation means the streams could be placed on a list of waterways that the state must take steps to rehabilitate.

"What is so compelling is that we found many different types of organisms are lost downstream of surface coal mines, and most of them begin to disappear at similar levels of mining," said Ryan S. King, associate professor of biology at Baylor. "Our analysis shows that coal mining is leading to widespread declines in aquatic biodiversity in Appalachian streams."

Lutz and King co-authored the paper with Bernhardt. Other coauthors were John P. Fay, instructor of geospatial analysis at the Nicholas School; Catherine E. Carter, a 2010 master's graduate of the Nicholas School, now at TetraTech; Ashley M. Helton, postdoctoral associate in Duke's Department of Biology; John Amos of SkyTruth; and David Campagna, of Campagna & Associates.

The study was supported by unrestricted gifts in support of research from The Foundation for the Carolinas and the Sierra Club, and through a contract to Amos and Campagna from Appalachian Voices.

Tim Lucas | EurekAlert!
Further information:
http://www.duke.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>