Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


'Hot spot' for toxic harmful algal blooms discovered off Washington coast

Rotating water in Strait of Juan de Fuca harbors populations of toxic algae

A part of the Strait of Juan de Fuca, which separates Washington state from Canada's British Columbia, is a potential "hot spot" for toxic harmful algal blooms affecting the Washington and British Columbia coasts.

Marine scientists found that under certain conditions, toxic algal cells from an offshore "initiation site" break off and are transported to nearshore areas, where they may trigger harmful algal blooms that ultimately force the closure of Washington state shellfish beds along beaches.

"Knowing more about these blooms is critical for protecting human and ecosystem health," said David Garrison, director of the National Science Foundation (NSF)'s Biological Oceanography Program, which co-funded the research. "This research is a very successful step toward addressing harmful algal blooms in the U.S."

The study, conducted by a team of scientists from NOAA's Fisheries Service, San Francisco State University and the universities of Washington, Maine and Western Ontario, is part of the interagency Ecology and Oceanography of Harmful Algal Blooms Pacific Northwest Program.

"Understanding how and where harmful algal blooms originate will help provide early warnings to protect human health and reduce the impact of biotoxins on coastal shellfisheries," said Vera Trainer, lead author of a paper published in the January issue of the journal Limnology & Oceanography, and a scientist at the NOAA Fisheries Northwest Fisheries Science Center in Seattle.

Scientists noted that the Juan de Fuca eddy, a circular water mass rotating some 30 miles off the northern coast of Washington at the mouth of the Juan de Fuca Strait, frequently contained significant populations of the microscopic toxic alga, Pseudo-nitzschia.

Over the course of the five-year study, the researchers took thousands of measurements at sea and conducted experiments onboard research vessels and in their laboratories. They hoped to better understand the factors that initiate and sustain the growth of this toxic alga, and to determine why it produces a deadly biotoxin.

This naturally-produced biotoxin, domoic acid, can accumulate in shellfish, crabs and some fish.

By attacking the nervous system it can cause adverse health effects or death in birds, marine mammals and humans who consume affected marine species. Fishing communities may suffer severe economic losses as a result of closures of recreational, subsistence and commercial harvesting, and lost tourism.

The Limnology & Oceanography paper, titled "Variability of Pseudo-nitzschia and domoic acid in the Juan de Fuca eddy region and its adjacent shelves," was co-authored by Vera Trainer (NOAA Fisheries); Barbara Hickey and Evelyn Lessard (University of Washington); William Cochlan (San Francisco State University); Charles Trick (The University of Western Ontario); Mark Wells (University of Maine); and Amoreena MacFadyen and Stephanie Moore (University of Washington).

ECOHAB is an interagency program to investigate harmful algal blooms in coastal U.S. waters to protect communities and resources. In addition to NSF and NOAA, it includes the Environmental Protection Agency, National Aeronautics and Space Administration and the Office of Naval Research.

Cheryl Dybas | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>