Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Substantial EU financial support

28.10.2013
Success in disk laser research with a rich tradition at the University of Stuttgart

The development of ultra-short-pulse disk lasers (UKP lasers) with a high midrange power is being substantially supported by the EU for three years. The scientific and strategic commitment by the Institute for Laser Tools (IFSW) at the University of Stuttgart to develop the next generation of ultra-short-pulse disk lasers is now leading into two STReP projects (Specific Targeted Research Projects) in the framework of the 7th European Subsidy Programme of the EU. The project is planned to start on 1st November 2013.


Modul
University of Stuttgart (IFSW)

Both projects have the aim of disk lasers with several hundred watt midrange power, the one with particularly short pulses (shorter than a tenth of a billionth of a second) on the basis of mutually cooled laser disks made of titanium sapphire (sapphire fortified with titanium), the other with a crystalline wave guide as a pre-amplifier and a laser disk as a main amplifier for cylindrically polarised pulses with a duration of some billionths of seconds. Together the projects have a volume of 9.14 million €, whereby the financial support provided by the EU amounts to 6.37 million €, of which the IFSW will receive 1.9 million €. The projects are coordinated at the IFSW in the business division for laser development and laser optics headed by Dr. Abdou Ahmed.

Prof. Thomas Graf, Head of the Institute for Laser Tools at the University of Stuttgart, commented on the success story: “Along with the very interesting scientific challenges, the development of new ultra- short-pulse disk lasers with a high midrange power is also of great scientific interest with a view to the increase in productivity with the laser-based material processing”.

The consortia comprise the renowned partners: Thales Optronique SA (France), Element Six Ltd. (UK), Centre National de la Recherche Scientifique - CNRS (France), Oxford Lasers Ltd. (UK) and M-Squared Lasers Ltd. (UK) for the development of the titanium sapphire disk lasers (coordination Dr. A. Voß, IFSW, University of Stuttgart, Germany) as well as Time-Bandwidth Products AG (Switzerland), Centre National de la Recherche Scientifique - CNRS (France), Fibercryst SAS (France), Next Scan Technology B.V. (The Netherlands), GFH GmbH (Germany), Schweißtechnische Lehr- und Versuchsanstalt SLV Mecklenburg-Vorpommern (Germany) and Class 4 Laser Professionals AG (Switzerland) for the project on the ultra-short-pulse laser disks with cylindrical polarisation (coordination Dr. M. Abdou Ahmed, IFSW, University of Stuttgart, Germany).

Further information:
Dr. Abdou Ahmed, University of Stuttgart, Institute for Laser Tools,
Twl. 0711/ 685-69755, Email: abdou.ahmed (at) ifsw.uni-stuttgart.de
Dr. Hans-Herwig Geyer, University of Stuttgart, University Communication,
Tel. 0711/685-82555, Email: hans-herwig.geyer (at) hkom.uni-stuttgart.de

Andrea Mayer-Grenu | idw
Further information:
http://www.uni-stuttgart.de

More articles from Machine Engineering:

nachricht Fraunhofer IWS Dresden collaborates with a strong research partner in Singapore
15.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Russian researchers developed high-pressure natural gas operating turbine-generator
06.02.2017 | Peter the Great Saint-Petersburg Polytechnic University

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>