Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Engineer Works to Clean and Improve Engine Performance

Iowa State University's Song-Charng Kong and his students are working to reduce emissions in diesel engines, develop a computer model of a gasoline engine and optimize new engine technologies. The results could be cleaner, more efficient engines in our cars and trucks.

Song-Charng Kong, Mechanical Engineering, (515) 294-3244,

The five engines in Song-Charng Kong’s Iowa State University laboratory have come a long way since Karl Benz patented a two-stroke internal combustion engine in 1879.

There are fuel injectors and turbochargers and electrical controls. There’s more horsepower, better efficiency, cleaner burning and greater reliability.

But Kong – with the help of 15 graduate students and all kinds of sensors recording engine cylinder pressure, energy release and exhaust emissions – is looking for even more.

Kong, an Iowa State assistant professor of mechanical engineering who keeps a piston by his office computer, is studying engines with the goal of reducing emissions and improving efficiency.

“There is still a lot of work to be done to improve engine performance,” Kong said. “All of this work will lead to incremental improvements.”

And those small improvements can add up when you consider there are more than 250 million registered vehicles on U.S. highways, according to the U.S. Department of Transportation.

Kong and his students are working on a lot of combustion projects in the lab: They’re studying diesel engines with the goal of reducing emissions. They’re developing a computer model of a gasoline engine that will make it much easier and faster to research and develop new engine technologies. They’re figuring out how to optimize new technologies such as multiple fuel injections per combustion cycle.

They’re working with Terry Meyer, an Iowa State assistant professor of mechanical engineering, to use high-speed, laser-based sensors that can record images of injection sprays and combustion inside a cylinder. That can give researchers insights into combustion characteristics and ideas for improvements.

They’re also studying how plastics dissolved in biodiesel affect engine performance. Biodiesel acts as a solvent on certain plastics and that has Kong checking to see if some waste plastic could be recycled by mixing it into fuel.

And they’re studying the combustion of ammonia in engines. Ammonia is relatively easy to store, is fairly dense with hydrogen and doesn’t produce greenhouse gases when it burns. So burning ammonia in engines could be an early step to developing a hydrogen economy.

Kong’s work is supported by grants from Deere & Co., the Ford Motor Co., the U.S. Department of Energy’s Los Alamos National Laboratory, the Ames-based Renewable Energy Group Inc. and the Iowa Energy Center based at Iowa State.

As he showed a visitor around his engine lab recently, pointing out a new turbocharger here or an experimental one-cylinder engine there, Kong said there’s good reason to keep studying engines.

“We want to make these engines better,” Kong said. “In my mind, the internal combustion engine may be the most important combustion system in daily life. Just by improving combustion efficiency by a fraction, we can save a lot of energy for the country and the world.”

And yes, he said, “There is a future for internal combustion engines.”

Mike Krapfl | Newswise Science News
Further information:

More articles from Machine Engineering:

nachricht Process-Integrated Inspection for Ultrasound-Supported Friction Stir Welding of Metal Hybrid-Joints
27.09.2016 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

nachricht Lightweight robots in manual assembly
13.09.2016 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>