Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineer Works to Clean and Improve Engine Performance

19.09.2008
Iowa State University's Song-Charng Kong and his students are working to reduce emissions in diesel engines, develop a computer model of a gasoline engine and optimize new engine technologies. The results could be cleaner, more efficient engines in our cars and trucks.

Song-Charng Kong, Mechanical Engineering, (515) 294-3244, kong@iastate.edu

The five engines in Song-Charng Kong’s Iowa State University laboratory have come a long way since Karl Benz patented a two-stroke internal combustion engine in 1879.

There are fuel injectors and turbochargers and electrical controls. There’s more horsepower, better efficiency, cleaner burning and greater reliability.

But Kong – with the help of 15 graduate students and all kinds of sensors recording engine cylinder pressure, energy release and exhaust emissions – is looking for even more.

Kong, an Iowa State assistant professor of mechanical engineering who keeps a piston by his office computer, is studying engines with the goal of reducing emissions and improving efficiency.

“There is still a lot of work to be done to improve engine performance,” Kong said. “All of this work will lead to incremental improvements.”

And those small improvements can add up when you consider there are more than 250 million registered vehicles on U.S. highways, according to the U.S. Department of Transportation.

Kong and his students are working on a lot of combustion projects in the lab: They’re studying diesel engines with the goal of reducing emissions. They’re developing a computer model of a gasoline engine that will make it much easier and faster to research and develop new engine technologies. They’re figuring out how to optimize new technologies such as multiple fuel injections per combustion cycle.

They’re working with Terry Meyer, an Iowa State assistant professor of mechanical engineering, to use high-speed, laser-based sensors that can record images of injection sprays and combustion inside a cylinder. That can give researchers insights into combustion characteristics and ideas for improvements.

They’re also studying how plastics dissolved in biodiesel affect engine performance. Biodiesel acts as a solvent on certain plastics and that has Kong checking to see if some waste plastic could be recycled by mixing it into fuel.

And they’re studying the combustion of ammonia in engines. Ammonia is relatively easy to store, is fairly dense with hydrogen and doesn’t produce greenhouse gases when it burns. So burning ammonia in engines could be an early step to developing a hydrogen economy.

Kong’s work is supported by grants from Deere & Co., the Ford Motor Co., the U.S. Department of Energy’s Los Alamos National Laboratory, the Ames-based Renewable Energy Group Inc. and the Iowa Energy Center based at Iowa State.

As he showed a visitor around his engine lab recently, pointing out a new turbocharger here or an experimental one-cylinder engine there, Kong said there’s good reason to keep studying engines.

“We want to make these engines better,” Kong said. “In my mind, the internal combustion engine may be the most important combustion system in daily life. Just by improving combustion efficiency by a fraction, we can save a lot of energy for the country and the world.”

And yes, he said, “There is a future for internal combustion engines.”

Mike Krapfl | Newswise Science News
Further information:
http://www.iastate.edu

More articles from Machine Engineering:

nachricht Satellite-based Laser Measurement Technology against Climate Change
17.01.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht LZH optimizes laser-based CFRP reworking for the aircraft industry
24.11.2016 | Laser Zentrum Hannover e.V.

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>