Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Efficient Division of Labor between Humans and Robots in Assembly Systems

25.11.2013
In early September, the EU project »LIAA – Lean Intelligent Assembly Automation« started

Robots are meant to increase productivity, improve safety at work, and relieve people: The application-oriented EU project LIAA was kicked off on 2 September 2013.

In a European consortium led by Fraunhofer IPA, scientists will develop cost-effective robot systems and applications for assembly. The collaboration between humans and robots will help to combine the cognitive abilities of humans with the strength and repeatability of robots. It will not only increase productivity and relieve workers but also reduce the costs for automation solutions.

The LIAA project brings together leading European research institutes, component makers, technology providers, and end users. The project aims at developing a standard software framework for assembly systems, combining the strengths of humans and robots. Depending on the process and the workload of the worker, the assembly workstation can be used simultaneously by both robots and humans. While the robot handles, for instance, repetitive and heavy work, the worker can concentrate on cognitively demanding tasks that require fine motor skills. The project focuses on the following aspects:

Intelligent symbiosis between humans and robots

Intelligent algorithms are used to divide the assembly process into individual steps and assign them to workers or robots, based on their particular suitability and workload. Then, the tasks of the process step are described according to the needs of the individual resource. Hence, the robot is sent machine-readable commands or state diagrams, while the worker receives multimedia-based assembly instructions created on-site and presented via head-mounted displays (HMD) or tablets. Efficient cooperation requires each party to know which step the other performs. While the assembly process is carried out, the worker is informed about what the robot is doing or will do next, using augmented reality technology.

For example, it visualizes the trajectory data or displays workplace areas that are blocked. Camera-based information systems and intelligent perception and prediction algorithms ensure that the robot recognizes what process step the worker is currently performing. As a result, it can adjust its own behavior and, e.g. in case of delay, take over additional process steps.

Lean and low-cost

Within LIAA, five industrial pilot cases have been defined in collaboration with European end users. A crucial factor contributing to the cost-effectiveness of assembly processes is the use of low cost components. »LIAA aims at developing a framework that allows for the cost-effective use of robot assistants on the assembly shop floor, based on lightweight robots available on the market, low-cost sensors, and open-source robot control software«, says Martin Naumann, LIAA project coordinator and group manager in the Robot and Assistive Systems Department at Fraunhofer IPA.

The key advantage is that—based on the framework—system integrators can implement low-cost robot systems using lightweight robots. With the various standardized interfaces and a library of program modules to be parameterized and interlinked for the robot and the sensors, it is sufficient to configure the framework to the specific assembly application.

Worker safety

One of the research priorities of LIAA is to ensure the safety of humans. This is done, on the one hand, by performing (semi-) automated risk assessments of the assembly system at the design stage and, on the other, by taking adequate safety measures at the execution stage. It is based on LIAA’s staged safety concept, which, depending on the risk assessment, selects and combines preventive, soft and/or hard safety measures. The LIAA framework supports the integration of the necessary safety technology. The active involvement in relevant standardization and certification bodies ensures that the experience and insights gained from the project find their way into new regulations of safety standards for collaborative robots.

Focus on application

The research project LIAA is coordinated by Fraunhofer IPA, one of the leading organizations for applied research in the field of robotics. Other project partners are Universal Robot A/S (lightweight robots), Visual Components OY (simulation technology), InSystems Automation GmbH and LP Montagetechnik GmbH (assembly solutions), as well as Penny AB and EON Development AB (AR hardware and software). With the internationally renowned research organizations Fundacion Tecnalia Research & Innovation, DTI Danish Technological Institute, and the Laboratory for Manufacturing Systems and Automation LMS at the University of Patras, LIAA commands the technical expertise and wide technological know-how to achieve the desired project objectives.

The integration of five end users (Adam Opel AG, Dresden Elektronik Ingenieurtechnik GmbH, SPINEA s.r.o., Fischer IMF GmbH & Co. KG, and TELNET Redes Inteligentes SA) from different industrial sectors and with different assembly applications allows the developed framework to be put to the test in five technology settings while the project is in progress.

Contact and more information:
Dipl.-Ing. Martin Naumann, Project Coordinator
Robot and Assistive Systems Department
Fraunhofer IPA
Nobelstr. 12, D-70569 Stuttgart
Telephone +49 711 970-1291
Fax +49 711 970 1008
martin.naumann@ipa.fraunhofer.de
www.project-leanautomation.eu
LIAA Partner:
Fraunhofer Gesellschaft, Institute for Manufacturing Engineering and Automation, Germany
Universal Robots A/S, Denmark
Visual Components Oy, Finland
InSystems Automation GmbH, Germany
Penny A.B., Sweden
EON Development AB, Sweden
LP-Montagetechnik GmbH, Germany
Danish Technological Institute, Denmark
Fundacion Tecnalia Research & Innovation, Spain
University of Patras, Laboratory for Manufacturing Systems and Automation, Greece
Adam Opel AG, Germany
Dresden Elektronik Ingenieurtechnik GmbH, Germany
Spinea, s.r.o., Slovakia
Fischer IMF GmbH & Co. KG, Germany
TELNET Redes Inteligentes SA, Spain

Jörg Walz | Fraunhofer-Institut
Further information:
http://www.project-leanautomation.eu

More articles from Machine Engineering:

nachricht PRESTO – Highly Dynamic Powerhouses
15.05.2017 | JULABO GmbH

nachricht Making lightweight construction suitable for series production
24.04.2017 | Laser Zentrum Hannover e.V.

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>