Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tiny levers, big moves in piezoelectric sensors

A team of university researchers, aided by scientists at the National Institute of Standards and Technology (NIST), have succeeded in integrating a new, highly efficient piezoelectric material into a silicon microelectromechanical system (MEMS).* This development could lead to significant advances in sensing, imaging and energy harvesting.

A piezoelectric material, such as quartz, expands slightly when fed electricity and, conversely, generates an electric charge when squeezed. Quartz watches take advantage of this property to keep time: electricity from the watch's battery causes a piece of quartz to expand and contract inside a small chamber at a specific frequency that circuitry in the watch translates into time.

Piezoelectric materials are also in sensors in sonar and ultrasound systems, which use the same principle in reverse to translate sound waves into images of, among other things, fetuses in utero and fish under the water.

Although conventional piezoelectric materials work fairly well for many applications, researchers have long sought to find or invent new ones that expand more and more forcefully and produce stronger electrical signals. More reactive materials would make for better sensors and could enable new technologies such as "energy harvesting," which would transform the energy of walking and other mechanical motions into electrical power.

Enter a material named PMN-PT.**

A large team led by scientists from the University of Wisconsin-Madison developed a way to incorporate PMN-PT into tiny, diving-board like cantilevers on a silicon base, a typical material for MEMS construction, and demonstrated that PMN-PT could deliver two to four times more movement with stronger force -- while using only 3 volts -- than most rival materials studied to date. It also generates a similarly strong electric charge when compressed, which is good news for those in the sensing and energy harvesting businesses.

To confirm that the experimental observations were due to the piezoelectric's performance, NIST researcher Vladimir Aksyuk developed engineering models of the cantilevers to estimate how much they would bend and at what voltage. Aksyuk also made other performance measures in comparison to silicon systems that achieve similar effects using electrostatic attraction.

"Silicon is good for these systems, but it is passive and can only move if heated or using electrostatics, which requires high voltage or large dissipated power," says Aksyuk. "Our work shows definitively that the addition of PMN-PT to MEMS designed for sensing or as energy harvesters will provide a tremendous boost to their sensitivity and efficiency. A much bigger 'bend for your buck,' I guess you could say."

Other participants included researchers from Penn State University; the University of California, Berkeley; the University of Michigan; Cornell University; and Argonne National Laboratory.

* S.H. Baek, J.Park, D.M. Kim, V.A. Aksyuk, R.R. Das, S.D. Bu, D.A. Felker, J. Lettieri, V. Vaithyanathan, S.S.N. Bharadwaja, N. Bassiri-Gharb, Y.B. Chen, H.P. Sun, C.M. Folkman, H.W. Jang, D.J. Kreft, S.K. Streiffer, R. Ramesh, X.Q. Pan, S. Trolier-McKinstry, D.G. Schlom, M.S. Rzchowski, R.H. Blick and C.B. Eom. Giant piezoelectricity on Si for hyperactive MEMS. Science. Published Nov. 18, 2011. Vol. 334 no. 6058 pp. 958-961. DOI: 10.1126/science.1207186.

** A crystalline alloy of lead, magnesium niobate and lead titanate.

Mark Esser | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht Neutrons pave the way to accelerated production of lithium-ion cells
20.03.2018 | Technische Universität München

nachricht Monocrystalline silicon thin film for cost-cutting solar cells with 10-times faster growth rate fabricated
16.03.2018 | Tokyo Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>