Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Test Facility Aims to Improve Land Mine Detection Equipment

15.05.2009
Researchers at the Georgia Institute of Technology have built a test facility to evaluate and enhance sensors designed to detect buried land mines. The unique automated system measures the response of individual electromagnetic induction sensors or arrays of sensors against land mines buried at many possible angles.

Electromagnetic induction sensors work by sending out magnetic fields and detecting the response from the electric currents generated when the field interacts with a metallic target.

While simple versions of these sensors are capable of detecting most land mines, advanced sensors are required to tell the difference between a land mine and harmless buried metal objects, which can include bottle tops, nails, shrapnel and spent bullets.

“We built this facility to aid in the development of advanced electromagnetic induction sensors and associated detection algorithms, mainly because little was known about how the signals collected by these sensors from land mines changed when the mines were buried underground at odd angles,” said Waymond Scott, a professor in Georgia Tech’s School of Electrical and Computer Engineering.

Scott and Gregg Larson, a senior research engineer in Georgia Tech’s George W. Woodruff School of Mechanical Engineering, constructed the facility with funding from the U.S. Army and described it at the recent SPIE Defense, Security and Sensing Symposium.

The testing structure was built with five computer-controlled axes – three translational stages and two rotational stages – and one manual axis. During testing, an individual sensor or array of sensors is fixed in the middle of the measurement region while the rotational stages orient a target and move it along a prescribed path around the sensor.

For testing, the researchers place the sensor in the center of the area so that it is located as far as possible from any surrounding metal, including the floor that contains structural steel and the aluminum beams of the positioner frame. In the procedure used to measure individual targets, they also controlled for the response from the surrounding metal structures.

The system can collect measurements of typical targets, including shell casings, wire loops, ball bearings and land mines. The data from each target is plotted as response curves, which are a function of the metal content and structure of the target and help discriminate a land mine from other metal buried in the ground. Previous field tests have shown that the shape of the response curves did not change when targets were buried at different depths, but the researchers wanted to know if the same was true for targets buried at different angles.

“This facility allows us to collect measurements of typical targets and clutter objects with respect to location and orientation, which would be very difficult to measure in the field due to the difficulty of accurately placing and rotating the target,” said Scott.

At the symposium, the researchers presented data collected in the facility from three targets – a single wire loop, a composite target with three wire loops and a 9 millimeter shell casing. Their results with the single wire loop and shell casing showed that the shape of the response curve was the same for all of the rotation angles, but the amplitude of the response changed with rotation angle. The more complex three-loop target exhibited changes in the shape and amplitude of the curve when the rotation angle was modified.

The researchers plan to use these results to make improvements to the sensor hardware and processing algorithms. Future efforts in the experimental facility will focus on measuring more targets and investigating methods for summarizing the massive amounts of collected data into simple physical models. The researchers also plan to improve the processing algorithms to help characterize more complicated targets and refine the detection and discrimination methods for electromagnetic induction sensors.

Experiments conducted in the facility will ultimately help researchers better discriminate between land mines and harmless metal objects, which will lead to reduced false alarm rates.

“This facility will help us develop advanced electromagnetic induction sensors that are most effective and able to quickly, accurately and repetitively measure the response of a buried target,” noted Scott.

This work is supported in part by the U.S. Army Night Vision and Electronic Sensors Directorate, Science and Technology Division, Countermine Branch and in part by the U. S. Army Research Office under Contract Number W911NF-05-1-0257. The views and conclusions contained in this document are those of the researchers and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Office or the U.S. Government.

Technical Contact: Waymond Scott (404-894-3048); E-mail: (waymond.scott@ece.gatech.edu)

Abby Vogel | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Power and Electrical Engineering:

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Researchers develop environmentally friendly soy air filter
16.01.2017 | Washington State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>