Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Test Facility Aims to Improve Land Mine Detection Equipment

15.05.2009
Researchers at the Georgia Institute of Technology have built a test facility to evaluate and enhance sensors designed to detect buried land mines. The unique automated system measures the response of individual electromagnetic induction sensors or arrays of sensors against land mines buried at many possible angles.

Electromagnetic induction sensors work by sending out magnetic fields and detecting the response from the electric currents generated when the field interacts with a metallic target.

While simple versions of these sensors are capable of detecting most land mines, advanced sensors are required to tell the difference between a land mine and harmless buried metal objects, which can include bottle tops, nails, shrapnel and spent bullets.

“We built this facility to aid in the development of advanced electromagnetic induction sensors and associated detection algorithms, mainly because little was known about how the signals collected by these sensors from land mines changed when the mines were buried underground at odd angles,” said Waymond Scott, a professor in Georgia Tech’s School of Electrical and Computer Engineering.

Scott and Gregg Larson, a senior research engineer in Georgia Tech’s George W. Woodruff School of Mechanical Engineering, constructed the facility with funding from the U.S. Army and described it at the recent SPIE Defense, Security and Sensing Symposium.

The testing structure was built with five computer-controlled axes – three translational stages and two rotational stages – and one manual axis. During testing, an individual sensor or array of sensors is fixed in the middle of the measurement region while the rotational stages orient a target and move it along a prescribed path around the sensor.

For testing, the researchers place the sensor in the center of the area so that it is located as far as possible from any surrounding metal, including the floor that contains structural steel and the aluminum beams of the positioner frame. In the procedure used to measure individual targets, they also controlled for the response from the surrounding metal structures.

The system can collect measurements of typical targets, including shell casings, wire loops, ball bearings and land mines. The data from each target is plotted as response curves, which are a function of the metal content and structure of the target and help discriminate a land mine from other metal buried in the ground. Previous field tests have shown that the shape of the response curves did not change when targets were buried at different depths, but the researchers wanted to know if the same was true for targets buried at different angles.

“This facility allows us to collect measurements of typical targets and clutter objects with respect to location and orientation, which would be very difficult to measure in the field due to the difficulty of accurately placing and rotating the target,” said Scott.

At the symposium, the researchers presented data collected in the facility from three targets – a single wire loop, a composite target with three wire loops and a 9 millimeter shell casing. Their results with the single wire loop and shell casing showed that the shape of the response curve was the same for all of the rotation angles, but the amplitude of the response changed with rotation angle. The more complex three-loop target exhibited changes in the shape and amplitude of the curve when the rotation angle was modified.

The researchers plan to use these results to make improvements to the sensor hardware and processing algorithms. Future efforts in the experimental facility will focus on measuring more targets and investigating methods for summarizing the massive amounts of collected data into simple physical models. The researchers also plan to improve the processing algorithms to help characterize more complicated targets and refine the detection and discrimination methods for electromagnetic induction sensors.

Experiments conducted in the facility will ultimately help researchers better discriminate between land mines and harmless metal objects, which will lead to reduced false alarm rates.

“This facility will help us develop advanced electromagnetic induction sensors that are most effective and able to quickly, accurately and repetitively measure the response of a buried target,” noted Scott.

This work is supported in part by the U.S. Army Night Vision and Electronic Sensors Directorate, Science and Technology Division, Countermine Branch and in part by the U. S. Army Research Office under Contract Number W911NF-05-1-0257. The views and conclusions contained in this document are those of the researchers and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Office or the U.S. Government.

Technical Contact: Waymond Scott (404-894-3048); E-mail: (waymond.scott@ece.gatech.edu)

Abby Vogel | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Power and Electrical Engineering:

nachricht Stretchable biofuel cells extract energy from sweat to power wearable devices
22.08.2017 | University of California - San Diego

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>