Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Test Facility Aims to Improve Land Mine Detection Equipment

15.05.2009
Researchers at the Georgia Institute of Technology have built a test facility to evaluate and enhance sensors designed to detect buried land mines. The unique automated system measures the response of individual electromagnetic induction sensors or arrays of sensors against land mines buried at many possible angles.

Electromagnetic induction sensors work by sending out magnetic fields and detecting the response from the electric currents generated when the field interacts with a metallic target.

While simple versions of these sensors are capable of detecting most land mines, advanced sensors are required to tell the difference between a land mine and harmless buried metal objects, which can include bottle tops, nails, shrapnel and spent bullets.

“We built this facility to aid in the development of advanced electromagnetic induction sensors and associated detection algorithms, mainly because little was known about how the signals collected by these sensors from land mines changed when the mines were buried underground at odd angles,” said Waymond Scott, a professor in Georgia Tech’s School of Electrical and Computer Engineering.

Scott and Gregg Larson, a senior research engineer in Georgia Tech’s George W. Woodruff School of Mechanical Engineering, constructed the facility with funding from the U.S. Army and described it at the recent SPIE Defense, Security and Sensing Symposium.

The testing structure was built with five computer-controlled axes – three translational stages and two rotational stages – and one manual axis. During testing, an individual sensor or array of sensors is fixed in the middle of the measurement region while the rotational stages orient a target and move it along a prescribed path around the sensor.

For testing, the researchers place the sensor in the center of the area so that it is located as far as possible from any surrounding metal, including the floor that contains structural steel and the aluminum beams of the positioner frame. In the procedure used to measure individual targets, they also controlled for the response from the surrounding metal structures.

The system can collect measurements of typical targets, including shell casings, wire loops, ball bearings and land mines. The data from each target is plotted as response curves, which are a function of the metal content and structure of the target and help discriminate a land mine from other metal buried in the ground. Previous field tests have shown that the shape of the response curves did not change when targets were buried at different depths, but the researchers wanted to know if the same was true for targets buried at different angles.

“This facility allows us to collect measurements of typical targets and clutter objects with respect to location and orientation, which would be very difficult to measure in the field due to the difficulty of accurately placing and rotating the target,” said Scott.

At the symposium, the researchers presented data collected in the facility from three targets – a single wire loop, a composite target with three wire loops and a 9 millimeter shell casing. Their results with the single wire loop and shell casing showed that the shape of the response curve was the same for all of the rotation angles, but the amplitude of the response changed with rotation angle. The more complex three-loop target exhibited changes in the shape and amplitude of the curve when the rotation angle was modified.

The researchers plan to use these results to make improvements to the sensor hardware and processing algorithms. Future efforts in the experimental facility will focus on measuring more targets and investigating methods for summarizing the massive amounts of collected data into simple physical models. The researchers also plan to improve the processing algorithms to help characterize more complicated targets and refine the detection and discrimination methods for electromagnetic induction sensors.

Experiments conducted in the facility will ultimately help researchers better discriminate between land mines and harmless metal objects, which will lead to reduced false alarm rates.

“This facility will help us develop advanced electromagnetic induction sensors that are most effective and able to quickly, accurately and repetitively measure the response of a buried target,” noted Scott.

This work is supported in part by the U.S. Army Night Vision and Electronic Sensors Directorate, Science and Technology Division, Countermine Branch and in part by the U. S. Army Research Office under Contract Number W911NF-05-1-0257. The views and conclusions contained in this document are those of the researchers and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Office or the U.S. Government.

Technical Contact: Waymond Scott (404-894-3048); E-mail: (waymond.scott@ece.gatech.edu)

Abby Vogel | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Power and Electrical Engineering:

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

nachricht New nanofiber marks important step in next generation battery development
13.03.2017 | Georgia Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Vanishing capillaries

23.03.2017 | Health and Medicine

Nanomagnetism in X-ray Light

23.03.2017 | Physics and Astronomy

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>