Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Squeezing Juice from the Sun: Tapping Solar Energy Could Provide Limitless Power

22.09.2008
The biggest energy bang for the buck comes from sunlight, says Binghamton University researcher Seshu Desu. And together with his research team, he’s hoping to tap into that immense supply of renewable energy and make it easily accessible as a flexible, large-area and low-cost, power source.

Focusing on creating autonomous power systems based on flexible thin-film solar cells, Desu is hoping to increase efficiency through novel design and restructuring of the cell itself.

“We’re attacking both sides of the problem: We want an integrated system that can generate power with solar cells and store that power more efficiently and at a lower cost,” said Desu, dean of Binghamton University’s Thomas J. Watson School of Engineering and Applied Science, and the head of the research team tackling how to harness the sun’s energy potential.

Although the typical generation efficiency of these solar cells today is about 10 percent, Desu says that the developing field of nanotechnology can help achieve this goal. When materials are structured into much smaller dimensions as nanoparticles, it increases the number of surfaces. This, in turn, increases the capacity to interact with the environment without increasing the size of the basic unit. Materials also have other unexpected and often beneficial properties when their sizes are reduced to nano levels. Desu’s research will take advantage of these as yet unknown properties in constructing the next generation of thin-film solar cells, in which nanoparticles cover a large surface area to maximize generation efficiency, reduce the cost and increase reliability.

“The solar energy we could access in one day could support the electricity needs of the Earth for a year at the present rate of consumption,” Desu added. “By 2015, solar cells as power sources could be a huge industry.

The other side of the coin in developing lower cost power sources using solar cells is that the energy that is produced must be stored efficiently and still provide ready, reliable access for several years. Desu compares marathon runners and sprinters to explain the current state of energy storage devices.

“Batteries are marathoners — they have high energy density but low power density,” he explained. “Capacitors are the opposite because they can supply high levels of power quickly, such as when you turn on your laptop computer.”

The problem with energy-dense batteries is their size and lifetime, whereas lightning-fast capacitors run down quickly. The solution is to combine the best qualities of both into a supercapacitor, Desu said.

“Potential for solar energy utilization can be maximized when the solar cells are integrated with high-efficient energy storage supercapacitor devices that could accommodate the accelerated power needs. We were able to produce supercapacitors with significantly high energy and power densities with extremely long cycle lifetimes using the advantages of nanostructuring as well as thin-film nanocomposite materials,” he said. “To achieve high-energy density and prevent self-discharge through open circuit reactions, we developed inorganic and organic solid-state electrolytes as gels or membranes with ionic conductors that are biologically derived.”

Integrated solar-cell supercapacitor structures as autonomous power sources are also being investigated, Desu added. And the direct applications of the autonomous power system based on solar cells are found everywhere, not just in computers or electronic gadgets.

“Research should ultimately transfer scientific innovations into useful products and processes that would benefit society. It’s not just curiosity,” he said.

In addition to flexible, large-area autonomous power sources, there is a growing need for highly efficient large-area lighting. For that latter purpose, some members of Desu’s group are developing ZnObased light-emitting diodes (LED). His group has also been developing flexible thin film medical sensing devices. Desu suggests that due to their flexibility and precision detection capacity, these sensing devices could be built into the environment. For example, if built into the walls of a shower stall, the devices would remain unobtrusive yet provide accurate monitoring of potential health threats.

“The future exists in latent form in the present and if we can identify dangerous conditions, such as cancer growth, in their latent phase, intervention is easy and less costly,” says Desu. “We’re trying to migrate flexible electronics into that area of application. In effect, our cars are better monitored than our bodies are.”

Gail Glover | Newswise Science News
Further information:
http://www.binghamton.edu

Further reports about: Desu SOLAR Sun electrolytes solar cells solar energy thin-film solar cells

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>