Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Siemens offers solution for generating steam from off-gases of electric arc furnaces

15.11.2013
- Steam can be used directly or used to generate electrical energy
- Reduces conversion costs and consumption of fossil fuels
- Modular structure facilitates modernization of existing plants

Siemens Metals Technologies has developed a system for recovering heat from the hot off-gases of electric arc furnaces. The thermal energy that was previously discharged unused to the environment is now used to generate steam.


Heat recovery system from Siemens: The thermal energy recovered from the hot exhaust gases of electric arc furnaces is used to generate steam.

The steam can be put to good use in other processes in the steel works or in the generation of electricity. The system has a modular structure and can be dimensioned for the amount of heat to be recovered and integrated into the existing exhaust gas cooling system. To maximize the amount of steam obtained, it can substitute the complete conventional off-gas cooling system in the electric steel plant.

A possible saving of 22.5 kilowatt hours per metric ton of steel in the specific use of energy was proven in a Turkish steel mill. If the generated steam is used to preheat the feed water in the plant's in-house power station, the annual savings potential amounts to 45,000 metric tons of coal.

In order to cut running costs or to fulfill environmental regulations, more and more operators of electric steel mills are banking on improving the energy efficiency of their plants. Although the electric steel production route based on scrap recycling has a much lower specific energy requirement than steel production from iron ore, it is nevertheless an energy-intensive process.

Depending on the method of operation, up to one-third of the energy used by an electric arc furnace is lost through off-gases. The sensible heat of the exhaust gases is usually discharged unused to the environment through the water and air cooling systems.

Temperatures of up to 1,800 °C prevail in the exhaust gas stream. To make these considerable amounts of energy suitable for use, Siemens has developed a steam generation system that can be integrated into the existing off-gas cooling system of the arc furnace or can replace it entirely. The system consists of a boiler including steam drum, piping, water tanks, pump groups for feed and boiler water, and the associated sensors.

A group of feed water pumps supplies the boiler with the necessary water and ensures the required pressure. To increase its recovery performance, the system can be equipped with a feed water preheating process called an "economizer". This economizer heats the water almost to the boiling point before feeding it into the steam drum on the boiler.

To separate the heat from the off-gas of the electric arc furnace as efficiently as possible, the new Siemens system has diverse nested radiation and convection heating surfaces. The water is fed to the heating surfaces through distribution pipes with the aid of recirculation pump groups. The amount of water fed depends on the different pipe geometries and the heat load of the respective sections.

A correspondingly adapted recirculation ratio ensures safe, reliable and cost-effective operation of the boiler system. A certain amount of the boiler water evaporates during every circulation cycle between the steam drum and the heated surfaces. The resulting steam bubbles are then separated from the water inside the steam drum. A buffer storage can be optionally installed to balance out steam production, which is uneven due to the production process.

The heat recovery system from Siemens was specially conceived for the tough ambient conditions in the steel mill. Large amounts of dust and corrosive components in the exhaust gas must be dealt with as well as changing temperatures and amounts of the off-gas. Moreover, the system is equipped with the required safety facilities to comply with the Pressure Equipment Directive. It has a modular structure and can be adapted to differing requirements in each plant, thus facilitating the modernization of existing systems. Plant operators can choose between using the energy recovered in the form of steam directly or, for example, to generate electrical energy in steam turbines.

Installation of an energy recovery system in the exhaust gas system of an electric arc furnace with a tapping weight of 190 metric tons was analyzed within the scope of a feasibility study in a Turkish steel mill. The system was conceived for feed water preheating in the plant's own coal-fired power station. The continuous 50 bar(a) high-pressure steam production enables an annual saving of about 45,000 metric tons of coal in the power station. A power output of five megawatts (electrical) could be achieved if the steam were used directly to generate electricity. This corresponds to a reduction in the specific energy requirement of 22.5 kilowatt hours per metric ton of liquid steel.

Further information on solutions for steel works, rolling mills and processing lines can be found at www.siemens.com/metals.

Follow us on Twitter: www.twitter.com/siemens_press

The Siemens Industry Sector (Erlangen, Germany) is the world's leading supplier of innovative and environmentally friendly products and solutions for industrial customers. With end-to-end automation technology and industrial software, solid vertical-market expertise, and technology-based services, the Sector enhances its customers' productivity, efficiency, and flexibility. With a global workforce of more than 100,000 employees, the Industry Sector comprises the Divisions Industry Automation, Drive Technologies and Customer Services as well as the Business Unit Metals Technologies. For more information, visit http://www.siemens.com/industry

The Metals Technologies Business Unit (Linz, Austria), part of the Siemens Industry Sector, is one of the world's leading life-cycle partners for the metals industry. The Business Unit offers a comprehensive technology, modernization, product and service portfolio as well as integrated automation and environmental solutions covering the entire life cycle of plants. For more information, visit http://www.siemens.com/metals

Reference Number: IMT201311534e

Contact
Mr. Rainer Schulze
Metals Technologies
Siemens AG
Turmstr. 44
4031 Linz
Austria
Tel: +49 (9131) 7-44544
rainer.schulze​@siemens.com

Rainer Schulze | Siemens Industry
Further information:
http://www.siemens.com/industry

More articles from Power and Electrical Engineering:

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Researchers develop environmentally friendly soy air filter
16.01.2017 | Washington State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>