Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Siemens introduces point-of-use advanced oxidation system for TOC reduction in semiconductor applications

06.07.2009
Siemens has introduced an effective method for removing total organic carbon (TOC) in point-of-use (POU) ultrapure water treatment systems for semiconductor applications.

This proprietary advanced oxidation process, referred to as the VANOX POU system, will consistently reduce TOC to 0.5 parts per billion (ppb) and can treat seasonal TOC variations in feed water. This is important, since TOC elevations above 1.0 ppb can directly affect the manufacturing process, significantly impacting product yields.

Advanced oxidation produces hydroxyl radicals that attack and break down difficult organic compounds measured as TOC. Although advanced oxidation has been used in industrial applications for years, it had not been refined enough to minimize key contaminants and thus improve various tool applications. The Siemens VANOX POU system has made improvements in the reactor design, allowing reductions in power and capital costs and reductions in chemical use.

“The Siemens VANOX POU system creates a more effective radical for TOC reduction compared to common AOP processes,” said Bruce Coulter, Ultrapure Water Technical Manager for the Microelectronics Group at Siemens Water Technologies, “and it effectively removes troublesome organics such as urea, 2-propanol (IPA) and Trihalomethanes (THMs) found in semiconductor waters.”

The VANOX POU system will also deliver critical control temperature, low trace metal contaminates and reduce particles to less than 100 units per liter at .05 microns. The current industry standard for POU particle reduction is 200 to 500 units per liter.

VANOX is a trademark of Siemens and its affiliates in some countries.

Contact USA:
Karole Colangelo
Corporate Public Relations Manager
Siemens Water Technologies Corp.
2501 N. Barrington Road
Hoffman Estates, IL 60192
847-713-8458 phone
847-713-8469 fax
847-687-9630 cell
E-mail address karole.colangelo@siemens.com
The Siemens Industry Sector (Erlangen, Germany) is the world's leading supplier of production, transportation, building and lighting technologies. With integrated automation technologies as well as comprehensive industry-specific solutions, Siemens increases the productivity, efficiency and flexibility of its customers in the fields of industry and infrastructure. The Sector consists of six Divisions: Building Technologies, Drive Technologies, Industry Automation, Industry Solutions, Mobility and Osram. With around 222,000 employees worldwide Siemens Industry posted in fiscal year 2008 a profit of EUR3.86 billion with revenues totaling EUR38 billion.

With the business activities of Siemens VAI Metals Technologies, (Linz, Austria), Siemens Water Technologies (Warrendale, Pa., U.S.A.), and Industrial Technologies, (Erlangen, Germany), the Siemens Industry Solutions Division (Erlangen, Germany) is one of the world's leading solution and service providers for industrial and infrastructure facilities. Using its own products, systems and process technologies, Industry Solutions develops and builds plants for end customers, commissions them and provides support during their entire life cycle. With around 31,000 employees worldwide Siemens Industry Solutions achieved an order intake of EUR 8.415 billon in fiscal year 2008.

Dr. Rainer Schulze | Siemens Industry
Further information:
http://www.siemens.com/industry
http://www.siemens.com/water
http://www.siemens.com/industry-solutions

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>