Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensor system improves indoor air quality while making building ventilation more energy efficient

04.02.2014
A research consortium being coordinated at Saarland University is developing a novel sensor system for monitoring airborne contaminants that will provide high-quality indoor air without the energy losses typically associated with ventilation.

Energy consumption levels can be halved as a result. Professor Andreas Schütze is an expert in gas sensor technology at Saarland University and is the coordinator of the European research project ‘SENSIndoor’.


Andreas Schütze (pictured right): His sensor systems find use in a wide range of applications, from detecting chemicals outgassing from individual products to monitoring the quality of indoor air.

Foto: dasbilderwerk

Researchers plan to develop a cost-effective, intelligent ventilation system that will automatically supply fresh air to rooms and indoor spaces as and when needed.

The gas sensors detect air contamination due to the presence of volatile organic compounds (VOCs). Using the measurement data and information on when and how rooms are used, the system will be able to adjust the intensity and duration of ventilation. The project is being supported by the EU through a grant worth €3.4 million.

If windows are kept closed, indoor air can become a very unhealthy mix of chemicals, such as formaldehyde from furniture, solvents from carpet adhesives, chemical vapours from cleaning agents, benzene, xylene, and numerous others. This is particularly true when buildings have been well insulated and sealed to reduce energy costs. But what is good in terms of heat loss and energy efficiency, may not be so good for the health of those who live and work there.

Many volatile organic compounds are carcinogens and represent a health hazard particularly to children and older people. ‘If rooms are properly ventilated health hazards can be avoided. Unfortunately, our noses are usually unable to detect the presence of such contaminants, even when they are present at levels hazardous to health,’ explains project coordinator Andreas Schütze. Too much ventilation also results in high levels of heat loss, which has a negative cumulative effect on energy costs and the environment.

‘The sensor system that we are currently developing will maintain high-quality indoor air with the lowest possible contaminant levels while ensuring energy efficiency by means of automatic, customized ventilation,’ explains Professor Schütze. ‘The health hazards associated with high contaminant concentrations can therefore be avoided while at the same time reducing energy consumption in buildings by about fifty percent, which is highly significant in terms of existing carbon emission targets,’ says Schütze.

These highly sensitive artificial sense organs can reliably detect gases of all kinds, from toxic carbon monoxide to carcinogenic organic compounds, and can determine their concentrations quantitatively. Even the smallest quantities of trace gases do not go undetected by the sensors. The novel metal oxide semiconductor (MOS) gas sensors and so-called gas-sensitive field-effect sensors, which Schütze has been developing in collaboration with partners in Sweden, Finland and Switzerland, are able to detect air contaminants such as formaldehyde, benzene or xylene at concentrations well below one in a million.

However, in order to be used for the proposed application, the sensitivity of the monitoring system will need to be improved even further. The sensor system therefore collects molecules in the air over a known period of time and then quantitatively measures the amounts collected – an approach which significantly reduces the system’s detection threshold.

‘If the concentration of a particular molecule is above a specified limit, fresh air is automatically introduced to modify the composition of the air and re-establish good air quality. If all of the rooms in a building are equipped with our sensors and if the sensors are connected to an intelligent ventilation control unit, the system can ventilate each room in a way that has been optimized for the specific use to which that room is put.

For example, if there is a problem with contaminants in the indoor air of a school building, classroom ventilation can be adapted to fit in with teaching periods and break times,’ explains Schütze. The researchers within the SENSIndoor project will therefore be studying and evaluating a variety of ventilation scenarios in schools, office buildings, homes and residential buildings. The objective is to learn more about ventilation patterns and requirements in these buildings so that the system can provide optimized ventilation under any given conditions.

Research institutions and industrial partners from Sweden (Linköping University and Sensic AB), Finland (University of Oulu and Picodeon LTD OY), Switzerland (SGX Sensortech SA), France (SARL Nanosense) and Germany (Saarland University, Fraunhofer Institute for Chemical Technology, 3S GmbH and Eurice GmbH) will be working together within the SENSIndoor project.

The project has received funding totalling €4.6 million over a period of three years, of which €3.4 million has come from the EU as part of the Seventh Framework Programme (FP7). Approximately €1 million will be used to fund project research carried out in Saarland.

Contact: Prof. Dr. Andreas Schütze, Measurement Technology Lab, Saarland University, Saarbrücken, Germany: Tel. +49 (0)681 302-4663, E-mail: schuetze@lmt.uni-saarland.de

Press photographs are available at http://www.uni-saarland.de/pressefotos and can be used at no charge.

Note for radio journalists: Studio-quality telephone interviews can be conducted using broadcast audio IP codec technology (IP direct dial or via the ARD node 106813020001). Contact: Press and Public Relations Office +49 (0)681302-2601, or -64091.

Claudia Ehrlich | Universität des Saarlandes
Further information:
http://www.uni-saarland.de
http://www.lmt.uni-saarland.de/index.php

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>