Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensor system improves indoor air quality while making building ventilation more energy efficient

04.02.2014
A research consortium being coordinated at Saarland University is developing a novel sensor system for monitoring airborne contaminants that will provide high-quality indoor air without the energy losses typically associated with ventilation.

Energy consumption levels can be halved as a result. Professor Andreas Schütze is an expert in gas sensor technology at Saarland University and is the coordinator of the European research project ‘SENSIndoor’.


Andreas Schütze (pictured right): His sensor systems find use in a wide range of applications, from detecting chemicals outgassing from individual products to monitoring the quality of indoor air.

Foto: dasbilderwerk

Researchers plan to develop a cost-effective, intelligent ventilation system that will automatically supply fresh air to rooms and indoor spaces as and when needed.

The gas sensors detect air contamination due to the presence of volatile organic compounds (VOCs). Using the measurement data and information on when and how rooms are used, the system will be able to adjust the intensity and duration of ventilation. The project is being supported by the EU through a grant worth €3.4 million.

If windows are kept closed, indoor air can become a very unhealthy mix of chemicals, such as formaldehyde from furniture, solvents from carpet adhesives, chemical vapours from cleaning agents, benzene, xylene, and numerous others. This is particularly true when buildings have been well insulated and sealed to reduce energy costs. But what is good in terms of heat loss and energy efficiency, may not be so good for the health of those who live and work there.

Many volatile organic compounds are carcinogens and represent a health hazard particularly to children and older people. ‘If rooms are properly ventilated health hazards can be avoided. Unfortunately, our noses are usually unable to detect the presence of such contaminants, even when they are present at levels hazardous to health,’ explains project coordinator Andreas Schütze. Too much ventilation also results in high levels of heat loss, which has a negative cumulative effect on energy costs and the environment.

‘The sensor system that we are currently developing will maintain high-quality indoor air with the lowest possible contaminant levels while ensuring energy efficiency by means of automatic, customized ventilation,’ explains Professor Schütze. ‘The health hazards associated with high contaminant concentrations can therefore be avoided while at the same time reducing energy consumption in buildings by about fifty percent, which is highly significant in terms of existing carbon emission targets,’ says Schütze.

These highly sensitive artificial sense organs can reliably detect gases of all kinds, from toxic carbon monoxide to carcinogenic organic compounds, and can determine their concentrations quantitatively. Even the smallest quantities of trace gases do not go undetected by the sensors. The novel metal oxide semiconductor (MOS) gas sensors and so-called gas-sensitive field-effect sensors, which Schütze has been developing in collaboration with partners in Sweden, Finland and Switzerland, are able to detect air contaminants such as formaldehyde, benzene or xylene at concentrations well below one in a million.

However, in order to be used for the proposed application, the sensitivity of the monitoring system will need to be improved even further. The sensor system therefore collects molecules in the air over a known period of time and then quantitatively measures the amounts collected – an approach which significantly reduces the system’s detection threshold.

‘If the concentration of a particular molecule is above a specified limit, fresh air is automatically introduced to modify the composition of the air and re-establish good air quality. If all of the rooms in a building are equipped with our sensors and if the sensors are connected to an intelligent ventilation control unit, the system can ventilate each room in a way that has been optimized for the specific use to which that room is put.

For example, if there is a problem with contaminants in the indoor air of a school building, classroom ventilation can be adapted to fit in with teaching periods and break times,’ explains Schütze. The researchers within the SENSIndoor project will therefore be studying and evaluating a variety of ventilation scenarios in schools, office buildings, homes and residential buildings. The objective is to learn more about ventilation patterns and requirements in these buildings so that the system can provide optimized ventilation under any given conditions.

Research institutions and industrial partners from Sweden (Linköping University and Sensic AB), Finland (University of Oulu and Picodeon LTD OY), Switzerland (SGX Sensortech SA), France (SARL Nanosense) and Germany (Saarland University, Fraunhofer Institute for Chemical Technology, 3S GmbH and Eurice GmbH) will be working together within the SENSIndoor project.

The project has received funding totalling €4.6 million over a period of three years, of which €3.4 million has come from the EU as part of the Seventh Framework Programme (FP7). Approximately €1 million will be used to fund project research carried out in Saarland.

Contact: Prof. Dr. Andreas Schütze, Measurement Technology Lab, Saarland University, Saarbrücken, Germany: Tel. +49 (0)681 302-4663, E-mail: schuetze@lmt.uni-saarland.de

Press photographs are available at http://www.uni-saarland.de/pressefotos and can be used at no charge.

Note for radio journalists: Studio-quality telephone interviews can be conducted using broadcast audio IP codec technology (IP direct dial or via the ARD node 106813020001). Contact: Press and Public Relations Office +49 (0)681302-2601, or -64091.

Claudia Ehrlich | Universität des Saarlandes
Further information:
http://www.uni-saarland.de
http://www.lmt.uni-saarland.de/index.php

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>