Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensor system improves indoor air quality while making building ventilation more energy efficient

04.02.2014
A research consortium being coordinated at Saarland University is developing a novel sensor system for monitoring airborne contaminants that will provide high-quality indoor air without the energy losses typically associated with ventilation.

Energy consumption levels can be halved as a result. Professor Andreas Schütze is an expert in gas sensor technology at Saarland University and is the coordinator of the European research project ‘SENSIndoor’.


Andreas Schütze (pictured right): His sensor systems find use in a wide range of applications, from detecting chemicals outgassing from individual products to monitoring the quality of indoor air.

Foto: dasbilderwerk

Researchers plan to develop a cost-effective, intelligent ventilation system that will automatically supply fresh air to rooms and indoor spaces as and when needed.

The gas sensors detect air contamination due to the presence of volatile organic compounds (VOCs). Using the measurement data and information on when and how rooms are used, the system will be able to adjust the intensity and duration of ventilation. The project is being supported by the EU through a grant worth €3.4 million.

If windows are kept closed, indoor air can become a very unhealthy mix of chemicals, such as formaldehyde from furniture, solvents from carpet adhesives, chemical vapours from cleaning agents, benzene, xylene, and numerous others. This is particularly true when buildings have been well insulated and sealed to reduce energy costs. But what is good in terms of heat loss and energy efficiency, may not be so good for the health of those who live and work there.

Many volatile organic compounds are carcinogens and represent a health hazard particularly to children and older people. ‘If rooms are properly ventilated health hazards can be avoided. Unfortunately, our noses are usually unable to detect the presence of such contaminants, even when they are present at levels hazardous to health,’ explains project coordinator Andreas Schütze. Too much ventilation also results in high levels of heat loss, which has a negative cumulative effect on energy costs and the environment.

‘The sensor system that we are currently developing will maintain high-quality indoor air with the lowest possible contaminant levels while ensuring energy efficiency by means of automatic, customized ventilation,’ explains Professor Schütze. ‘The health hazards associated with high contaminant concentrations can therefore be avoided while at the same time reducing energy consumption in buildings by about fifty percent, which is highly significant in terms of existing carbon emission targets,’ says Schütze.

These highly sensitive artificial sense organs can reliably detect gases of all kinds, from toxic carbon monoxide to carcinogenic organic compounds, and can determine their concentrations quantitatively. Even the smallest quantities of trace gases do not go undetected by the sensors. The novel metal oxide semiconductor (MOS) gas sensors and so-called gas-sensitive field-effect sensors, which Schütze has been developing in collaboration with partners in Sweden, Finland and Switzerland, are able to detect air contaminants such as formaldehyde, benzene or xylene at concentrations well below one in a million.

However, in order to be used for the proposed application, the sensitivity of the monitoring system will need to be improved even further. The sensor system therefore collects molecules in the air over a known period of time and then quantitatively measures the amounts collected – an approach which significantly reduces the system’s detection threshold.

‘If the concentration of a particular molecule is above a specified limit, fresh air is automatically introduced to modify the composition of the air and re-establish good air quality. If all of the rooms in a building are equipped with our sensors and if the sensors are connected to an intelligent ventilation control unit, the system can ventilate each room in a way that has been optimized for the specific use to which that room is put.

For example, if there is a problem with contaminants in the indoor air of a school building, classroom ventilation can be adapted to fit in with teaching periods and break times,’ explains Schütze. The researchers within the SENSIndoor project will therefore be studying and evaluating a variety of ventilation scenarios in schools, office buildings, homes and residential buildings. The objective is to learn more about ventilation patterns and requirements in these buildings so that the system can provide optimized ventilation under any given conditions.

Research institutions and industrial partners from Sweden (Linköping University and Sensic AB), Finland (University of Oulu and Picodeon LTD OY), Switzerland (SGX Sensortech SA), France (SARL Nanosense) and Germany (Saarland University, Fraunhofer Institute for Chemical Technology, 3S GmbH and Eurice GmbH) will be working together within the SENSIndoor project.

The project has received funding totalling €4.6 million over a period of three years, of which €3.4 million has come from the EU as part of the Seventh Framework Programme (FP7). Approximately €1 million will be used to fund project research carried out in Saarland.

Contact: Prof. Dr. Andreas Schütze, Measurement Technology Lab, Saarland University, Saarbrücken, Germany: Tel. +49 (0)681 302-4663, E-mail: schuetze@lmt.uni-saarland.de

Press photographs are available at http://www.uni-saarland.de/pressefotos and can be used at no charge.

Note for radio journalists: Studio-quality telephone interviews can be conducted using broadcast audio IP codec technology (IP direct dial or via the ARD node 106813020001). Contact: Press and Public Relations Office +49 (0)681302-2601, or -64091.

Claudia Ehrlich | Universität des Saarlandes
Further information:
http://www.uni-saarland.de
http://www.lmt.uni-saarland.de/index.php

More articles from Power and Electrical Engineering:

nachricht Another Milestone in Hybrid Artificial Photosynthesis
31.08.2015 | Lawrence Berkeley National Laboratory

nachricht New high energy density automotive battery system from Fraunhofer IISB and international partners
25.08.2015 | Fraunhofer-Gesellschaft

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

Im Focus: FIC Proteins Send Bacteria Into Hibernation

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue of “Cell Reports”, the scientists describe the mechanism of action and also explain why their discovery provides new insights into the evolution of pathogens.

For many poisons there are antidotes which neutralize their toxic effect. Toxin-antitoxin systems in bacteria work in a similar manner: As long as a cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Production research by Fraunhofer IAO honored with three awards at the ICPR 2015

31.08.2015 | Awards Funding

Single-Crystal Phosphors Suitable for Ultra-Bright, High-Power White Light Sources

31.08.2015 | Materials Sciences

Manchester Team Reveal New, Stable 2D Materials

31.08.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>