Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Sensor Exploits Traditional Weakness of Nano Devices

16.02.2010
By taking advantage of a phenomenon that until now has been a virtual showstopper for electronics designers, a team led by Oak Ridge National Laboratory’s Panos Datskos is developing a chemical and biological sensor with unprecedented sensitivity.

Ultimately, researchers believe this new “sniffer” will achieve a detection level that approaches the theoretical limit, surpassing other state-of-the-art chemical sensors. The implications could be significant for anyone whose job is to detect explosives, biological agents and narcotics.

“While the research community has been avoiding the nonlinearity associated with the nanoscale mechanical oscillators, we are embracing it,” said co-developer Nickolay Lavrik, a member of the Department of Energy lab’s Center for Nanophase Materials Sciences Division. “In the end, we hope to have a device capable of detecting incredibly small amounts of explosives compared to today’s chemical sensors.”

The device consists of a digital camera, a laser, imaging optics, a signal generator, digital signal processing and other components that collectively, much like a dog’s nose, can detect tiny amounts of substances in the air.

The underlying concept is based on micro-scale resonators that are similar to microcantilevers used in atomic force microscopy, which has recently been explored as mass and force sensing devices. Although the basic principle is simple – measuring changes in the resonance frequency due to mass changes – a number of obstacles have impeded widespread applications of such systems.

“These challenges are due to requirements of measuring and analyzing tiny oscillation amplitudes that are about the size of a hydrogen atom,” Lavrik said. Such traditional approaches require sophisticated low-noise electronic components such as lock-in amplifiers and phase-locked loops, which add cost and complexity.

Instead, this new type of sniffer works by deliberately hitting the microcantilevers with relatively large amounts of energy associated with a range of frequencies, forcing them into wide oscillation, or movement. Lavrik likened the response to a diving board’s movement after a swimmer dives.

“In the past, people wanted to avoid this high amplitude because of the high distortion associated with that type of response,” said Datskos, a member of the Measurement Science and Systems Engineering Division. “But now we can exploit that response by tuning the system to a very specific frequency that is associated with the specific chemical or compound we want to detect.”

When the target chemical reacts with the microcantilever, it shifts the frequency depending on the weight of the compound, thereby providing the detection.

“With this new approach, when the microcantilever stops oscillating we know with high certainty that the target chemical or compound is present,” Lavrik said.

The researchers envision this technology being incorporated in a handheld instrument that could be used by transportation security screeners, law enforcement officials and the military. Other potential applications are in biomedicine, environmental science, homeland security and analytical chemistry.

With adequate levels of funding, Datskos envisions a prototype being developed within six to 18 months.

UT-Battelle manages ORNL for DOE. Funding is provided by ORNL’s Laboratory Directed Research and Development program.

NOTE TO EDITORS: You may read other press releases from Oak Ridge National Laboratory or learn more about the lab at http://www.ornl.gov/news. Additional information about ORNL is available at the sites below:

Twitter - http://twitter.com/oakridgelabnews

RSS Feeds - http://www.ornl.gov/ornlhome/rss_feeds.shtml

Flickr - http://www.flickr.com/photos/oakridgelab

YouTube - http://www.youtube.com/user/OakRidgeNationalLab

LinkedIn - http://www.linkedin.com/companies/oak-ridge-national-laboratory

Facebook - http://www.facebook.com/Oak.Ridge.National.Laboratory

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov/news

More articles from Power and Electrical Engineering:

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

nachricht Tailor-Made Membranes for the Environment
30.11.2016 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>