Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Semiconducting sandwich filling retains its mystery

31.05.2010
Solving part of the long-standing puzzle of the electronic properties of an enigmatic temperature phase of a titanium oxide may yield new clues

Oxides of transition metals such as titanium are of interest for applications, such as hydrogen gas sensors or as catalysts, and have intriguing fundamental physical properties. In particular, the origin of an intermediate temperature phase of the compound Ti4O7 has puzzled scientists for decades.

By studying the different electrical phases of Ti4O7, researchers from the RIKEN SPring-8 Center in Harima, along with colleagues from other institutions in Japan, have now taken important steps towards understanding the fundamental differences between the compound’s electrical conductivity at room and low temperatures, and the enigmatic phase that forms at intermediate temperatures.

At room temperature and down to temperatures of 154 K, Ti4O7 is an excellent conductor, as it allows fast transport of electrical charges. At temperatures below 142 K, the compound is an electrical insulator. Between 142 K and 154 K, however, the mysterious intermediate temperature phase sets in where the compound is semiconducting. Both, the metallic and the insulating phases are well understood by classical theories. The semiconducting phase, however, is very strange and complex; its origin is particularly interesting because it is sandwiched by two such well-known phases, explains Munetaka Taguchi from the research team.

To elucidate the origin of the semiconducting phase, the researchers studied the electronic phases at the top of the valence band and bottom of the conduction band that are responsible for the electrical conduction. They employed the techniques of electron photoemission and x-ray absorption, which combined provide a detailed picture of the electronic phases.

In the high-temperature phase, Taguchi and colleagues found that so-called ‘coherent valence electrons’ extended as far as the conduction band, making it a metallic conductor. In the insulating phase, there is a gap in the electronic band structure and no electrons are available in the conduction band. For the intermediate regime, however, a small number of coherent electronic phases remain close to the conduction band and explain the measured electrical conductivity.

While it is clear that the small number of coherent electrons is a remnant of the metallic phase, the transformation path—from the semiconducting state to both the room-temperature metal and the low-temperature insulating phase—remains unclear, notes Taguchi. With such crucial fundamental questions still unsolved, more work is needed to study the nature of the coherent electronic phases, which Taguchi hopes “will provide us [with] vital clues to a more complete understanding of phase transitions.”

The corresponding author for this highlight is based at the Excitation Order Research Team, RIKEN SPring-8 Center

Journal information

1. Taguchi, M., Chainan, A., Matsunami, M., Eguchi, R., Takata, Y., Yabashi, M., Tamasaku, K., Nihino, Y., Ishikawa, T., Tsuda, S. et al. Anomalous state sandwiched between fermi liquid and charge ordered Mott-insulating phases of Ti4O7. Physical Review Letters 104, 106401 (2010)

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6298
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

nachricht Tailor-Made Membranes for the Environment
30.11.2016 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>