Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Semiconducting sandwich filling retains its mystery

Solving part of the long-standing puzzle of the electronic properties of an enigmatic temperature phase of a titanium oxide may yield new clues

Oxides of transition metals such as titanium are of interest for applications, such as hydrogen gas sensors or as catalysts, and have intriguing fundamental physical properties. In particular, the origin of an intermediate temperature phase of the compound Ti4O7 has puzzled scientists for decades.

By studying the different electrical phases of Ti4O7, researchers from the RIKEN SPring-8 Center in Harima, along with colleagues from other institutions in Japan, have now taken important steps towards understanding the fundamental differences between the compound’s electrical conductivity at room and low temperatures, and the enigmatic phase that forms at intermediate temperatures.

At room temperature and down to temperatures of 154 K, Ti4O7 is an excellent conductor, as it allows fast transport of electrical charges. At temperatures below 142 K, the compound is an electrical insulator. Between 142 K and 154 K, however, the mysterious intermediate temperature phase sets in where the compound is semiconducting. Both, the metallic and the insulating phases are well understood by classical theories. The semiconducting phase, however, is very strange and complex; its origin is particularly interesting because it is sandwiched by two such well-known phases, explains Munetaka Taguchi from the research team.

To elucidate the origin of the semiconducting phase, the researchers studied the electronic phases at the top of the valence band and bottom of the conduction band that are responsible for the electrical conduction. They employed the techniques of electron photoemission and x-ray absorption, which combined provide a detailed picture of the electronic phases.

In the high-temperature phase, Taguchi and colleagues found that so-called ‘coherent valence electrons’ extended as far as the conduction band, making it a metallic conductor. In the insulating phase, there is a gap in the electronic band structure and no electrons are available in the conduction band. For the intermediate regime, however, a small number of coherent electronic phases remain close to the conduction band and explain the measured electrical conductivity.

While it is clear that the small number of coherent electrons is a remnant of the metallic phase, the transformation path—from the semiconducting state to both the room-temperature metal and the low-temperature insulating phase—remains unclear, notes Taguchi. With such crucial fundamental questions still unsolved, more work is needed to study the nature of the coherent electronic phases, which Taguchi hopes “will provide us [with] vital clues to a more complete understanding of phase transitions.”

The corresponding author for this highlight is based at the Excitation Order Research Team, RIKEN SPring-8 Center

Journal information

1. Taguchi, M., Chainan, A., Matsunami, M., Eguchi, R., Takata, Y., Yabashi, M., Tamasaku, K., Nihino, Y., Ishikawa, T., Tsuda, S. et al. Anomalous state sandwiched between fermi liquid and charge ordered Mott-insulating phases of Ti4O7. Physical Review Letters 104, 106401 (2010)

gro-pr | Research asia research news
Further information:

More articles from Power and Electrical Engineering:

nachricht Prototype device for measuring graphene-based electromagnetic radiation created
28.10.2016 | Lomonosov Moscow State University

nachricht Steering a fusion plasma toward stability
28.10.2016 | American Physical Society

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>