Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientist's Camera Sees Artwork Down to Its Underdrawings

08.12.2009
A scientist at the University of Arizona in Tucson has modified a commercial 8-megapixel digital SLR camera for infrared use, creating an inexpensive, portable new tool that even amateur photographers can use to quickly see through layers of paint in artwork to reveal drawings, defects or other features on the original canvas.

Conservators have been using infrared, or IR, cameras to examine and document artwork since the late 1960s. "But these cameras can cost upwards of $100,000, so the number of paintings studied by this technique has been extremely limited," said UA optical sciences and physics Professor Charles M. Falco.

‘The technique is based on the fact that many common pigments are partially transparent to infrared light, making it possible to use appropriate infrared sensors to capture important information from surfaces that are covered by layers of paint," he said.

Early last year, Falco – an experimental physicist who has been interested in photography and in art since childhood – had an idea that he thought might work.

He realized that modern digital cameras use silicon sensors sensitive to the germane infrared wavelengths and that such cameras might be modified to capture high-resolution infrared photographs – or "IR reflectograms"

– of works of art.

Falco bought a one-generation-old Canon 30D camera on eBay.

"If this didn't work, I would have been out the better part of $1,000.
But I was willing to accept that," he said.
For about another $450, Falco converted the camera by removing the infrared-blocking filter and replacing it with a visible-blocking filter, thereby allowing only IR light to reach the camera's sensor. He also adjusted the electronics so that the autofocus feature automatically offsets the camera lens to bring infrared light into sharp focus.

Then he began visiting museums to photograph art.

In a little over a year, Falco has tested his system under a variety of conditions in a dozen museums on three continents, including the National Gallery of Art in Washington, D.C., the State Hermitage Museum in St. Petersburg, Russia, and the National Museum of Western Art in Toyko, Japan.

The first paintings Falco studied were in the Samuel H. Kress Collection at the University of Arizona Museum of Art. Among these works is a painting titled "The Man of Sorrows with Saints and Donors." It was painted by an unknown French artist, probably sometime between the years

1525 and 1550.

"My camera let me discover something about that painting that nobody knew existed - that there are guide lines under the paint that the artist used to create the pedestal in perfect perspective," Falco said.

"These lines reveal that this Early Renaissance artist understood and based his drawing on the constructed laws of perspective."

Next, at the Indianapolis Museum of Art, Falco had the chance to test his camera on the same three paintings that conservators had recently analyzed using a $100,000 IR camera.

"They were thrilled because for one of the paintings, I captured essentially all the information the expensive camera did, and for the other two paintings, I captured between half and two-thirds of the information that the expensive camera did," Falco said.

Falco's converted camera, including its 35mm f/2 lens purchased for less than $250, cost about $2,000 total.

"So you can have at least half the information about these artworks that is revealed in the IR for $2,000, versus having no information at all because you can't afford the $100,000 camera," he said.

On his visit to Japan's National Museum of Western Art last December, Falco photographed about 100 artworks that interested him in less than two hours.

"I just walk up to a wall where the painting is on exhibit and take its picture. Even in subdued museum lighting, I can handhold the camera to get a good IR image at 1/30 of a second."

He added, "I probably now have more IR reflectograms in my computer than have been taken in total during the entirety of the last 40 years."

Editors of the "Review of Scientific Instruments" invited Falco to write a technical description of his high-resolution imaging instrument and published the paper as the cover story of their July 2009 issue. The paper, titled "High resolution digital camera for infrared reflectography" is published online.

Falco will give invited lectures on the camera and its applications at the University of Washington in January, at an international conference on digital image processing in Singapore in February and at the meeting of the American Physical Society in Portland, Ore., in March.

Falco's work is based on a collaboration with the artist David Hockney and on image analysis research funded by the Army Research Office.

CONTACT:
Charles M. Falco (520-621-6771; falco@u.arizona.edu)
WEBLINKS:
Charles Falco Web page -
http://www.optics.arizona.edu/faculty/Resumes/Falco.htm
Charles Falco's Art-Optics Web page -
http://www.optics.arizona.edu/SSD/art-optics/index.html
Review of Scientific Instruments article - http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=RSINAK000080000007071301000001&idtype=cvips&gifs=yes

Lori Stiles | University of Arizona
Further information:
http://www.arizona.edu

More articles from Power and Electrical Engineering:

nachricht The world's most powerful acoustic tractor beam could pave the way for levitating humans
22.01.2018 | University of Bristol

nachricht Siberian scientists learned how to reduce harmful emissions from HPPs
22.01.2018 | Siberian Federal University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Multifunctional Platform for the Delivery of Gene Therapeutics

22.01.2018 | Life Sciences

The world's most powerful acoustic tractor beam could pave the way for levitating humans

22.01.2018 | Power and Electrical Engineering

Siberian scientists learned how to reduce harmful emissions from HPPs

22.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>