Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sandia Labs’ Gemini-Scout robot likely to reach trapped miners ahead of rescuers

17.08.2011
In the first moments after a mining accident, first responders work against the clock to assess the situation and save the miners. But countless dangers lurk: poisonous gases, flooded tunnels, explosive vapors and unstable walls and roofs. Such potentially deadly conditions and unknown obstacles can slow rescue efforts to a frustrating pace.

To speed rescue efforts, engineers at Sandia National Laboratories have developed a robot that would eliminate some of the unknowns of mine rescue operations and arm first responders with the most valuable tool: information.

Sandia robotics engineers have designed the Gemini-Scout Mine Rescue Robot, which finds dangers and can provide relief to trapped miners. It’s able to navigate through 18 inches of water, crawl over boulders and rubble piles, and move in ahead of rescuers to evaluate precarious environments and help plan operations.

“We have designed this robot to go in ahead of its handlers, to assess the situation and potential hazards and allow operations to move more quickly,” said Jon Salton, Sandia engineer and project manager. “The robot is guided by remote control and is equipped with gas sensors, a thermal camera to locate survivors and another pan-and-tilt camera mounted several feet up to see the obstacles we’re facing.”

Less than four feet long and two feet tall, Gemini-Scout is nimble enough to navigate around tight corners and over safety hatches a foot high. In addition to giving rescuers an idea of what they’re headed into, the robotic scout can haul food, air packs and medicine to those trapped underground. It is equipped with two-way radios and can be configured to drag survivors to safety.

Designers built the Gemini-Scout to negotiate nearly every known mine hazard. Methane and other gases can ignite if exposed to sparks, so the electronics are housed in casings designed to withstand an explosion. “Such measures would prevent a spark from causing further destruction. While it might harm the robot, it wouldn’t create another dangerous situation for the miners or rescuers,” Salton said.

To ensure functionality in flooded tunnels, Gemini-Scout’s controls and equipment needed to be waterproof. “When we were designing a robot that could provide this level of assistance, we had to be aware of the pressures and gases that are often found in that environment,” said Sandia engineer Clint Hobart, who was responsible for the mechanical design and system integration. “So we had to make sure the strength of materials matched what our goals were, and we had to keep everything lightweight enough so it could navigate easily.”

In addition, engineers had to build something intuitive for new operators who need to learn the system quickly. To overcome that challenge, they used an Xbox 360 game controller to direct Gemini-Scout. “We focused a lot on usability and copied a lot of gamer interfaces so that users can pick it up pretty quickly,” said Sandia engineer Justin Garretson, the lead software developer.

Sandia engineers will demonstrate the Gemini-Scout Tuesday, Aug. 16, 4-5 p.m.; Wednesday, Aug. 17, 11 a.m.-noon; and Thursday, Aug. 18, 4-5 p.m. at the Association for Unmanned Vehicle Systems International (AUVSI) Unmanned Systems North America 2011 at the Walter E. Washington Convention Center in Washington, D.C. Members of the media who are interested in attending should contact Melanie Hinton of AUVSI at (703) 677-1400 or mhinton@auvsi.org.

The National Institute for Occupational Safety and Health (NIOSH) provided funding for the efforts, which have been underway for the last three years. If all goes well, the Gemini-Scout could be ready to head underground by the end of next year. The team is in the final stages of licensing Gemini-Scout to a commercial robotics company, but for now, the Mine Safety and Health Administration will be the primary customer.

“We anticipate that this technology is broad enough to be appealing to other first responders, such as police, firefighters and medical personnel,” Salton said. “Gemini-Scout could easily be fitted to handle earthquake and fire scenarios, and we think this could provide real relief in currently inaccessible situations.”

Sandia National Laboratories is a multiprogram laboratory operated and managed by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Sandia media relations contact:
Stephanie Hobby, shobby@sandia.gov, (505) 844-0948

Stephanie Hobby | EurekAlert!
Further information:
http://www.sandia.gov

More articles from Power and Electrical Engineering:

nachricht How protons move through a fuel cell
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety
21.06.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>