Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sandia Labs’ Gemini-Scout robot likely to reach trapped miners ahead of rescuers

17.08.2011
In the first moments after a mining accident, first responders work against the clock to assess the situation and save the miners. But countless dangers lurk: poisonous gases, flooded tunnels, explosive vapors and unstable walls and roofs. Such potentially deadly conditions and unknown obstacles can slow rescue efforts to a frustrating pace.

To speed rescue efforts, engineers at Sandia National Laboratories have developed a robot that would eliminate some of the unknowns of mine rescue operations and arm first responders with the most valuable tool: information.

Sandia robotics engineers have designed the Gemini-Scout Mine Rescue Robot, which finds dangers and can provide relief to trapped miners. It’s able to navigate through 18 inches of water, crawl over boulders and rubble piles, and move in ahead of rescuers to evaluate precarious environments and help plan operations.

“We have designed this robot to go in ahead of its handlers, to assess the situation and potential hazards and allow operations to move more quickly,” said Jon Salton, Sandia engineer and project manager. “The robot is guided by remote control and is equipped with gas sensors, a thermal camera to locate survivors and another pan-and-tilt camera mounted several feet up to see the obstacles we’re facing.”

Less than four feet long and two feet tall, Gemini-Scout is nimble enough to navigate around tight corners and over safety hatches a foot high. In addition to giving rescuers an idea of what they’re headed into, the robotic scout can haul food, air packs and medicine to those trapped underground. It is equipped with two-way radios and can be configured to drag survivors to safety.

Designers built the Gemini-Scout to negotiate nearly every known mine hazard. Methane and other gases can ignite if exposed to sparks, so the electronics are housed in casings designed to withstand an explosion. “Such measures would prevent a spark from causing further destruction. While it might harm the robot, it wouldn’t create another dangerous situation for the miners or rescuers,” Salton said.

To ensure functionality in flooded tunnels, Gemini-Scout’s controls and equipment needed to be waterproof. “When we were designing a robot that could provide this level of assistance, we had to be aware of the pressures and gases that are often found in that environment,” said Sandia engineer Clint Hobart, who was responsible for the mechanical design and system integration. “So we had to make sure the strength of materials matched what our goals were, and we had to keep everything lightweight enough so it could navigate easily.”

In addition, engineers had to build something intuitive for new operators who need to learn the system quickly. To overcome that challenge, they used an Xbox 360 game controller to direct Gemini-Scout. “We focused a lot on usability and copied a lot of gamer interfaces so that users can pick it up pretty quickly,” said Sandia engineer Justin Garretson, the lead software developer.

Sandia engineers will demonstrate the Gemini-Scout Tuesday, Aug. 16, 4-5 p.m.; Wednesday, Aug. 17, 11 a.m.-noon; and Thursday, Aug. 18, 4-5 p.m. at the Association for Unmanned Vehicle Systems International (AUVSI) Unmanned Systems North America 2011 at the Walter E. Washington Convention Center in Washington, D.C. Members of the media who are interested in attending should contact Melanie Hinton of AUVSI at (703) 677-1400 or mhinton@auvsi.org.

The National Institute for Occupational Safety and Health (NIOSH) provided funding for the efforts, which have been underway for the last three years. If all goes well, the Gemini-Scout could be ready to head underground by the end of next year. The team is in the final stages of licensing Gemini-Scout to a commercial robotics company, but for now, the Mine Safety and Health Administration will be the primary customer.

“We anticipate that this technology is broad enough to be appealing to other first responders, such as police, firefighters and medical personnel,” Salton said. “Gemini-Scout could easily be fitted to handle earthquake and fire scenarios, and we think this could provide real relief in currently inaccessible situations.”

Sandia National Laboratories is a multiprogram laboratory operated and managed by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Sandia media relations contact:
Stephanie Hobby, shobby@sandia.gov, (505) 844-0948

Stephanie Hobby | EurekAlert!
Further information:
http://www.sandia.gov

More articles from Power and Electrical Engineering:

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

nachricht IHP presents the fastest silicon-based transistor in the world
05.12.2016 | IHP - Leibniz-Institut für innovative Mikroelektronik

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>