Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rethinking Renewables: A New Approach to Energy Storage for Wind and Solar

29.09.2010
Rensselaer Polytechnic Institute Researchers Win $2 Million NSF Grant To Develop Capacitive Energy Storage System for Renewable Power Sources

Researchers at Rensselaer Polytechnic Institute are leading a new $2 million study to help overcome a key bottleneck slowing the proliferation of large-scale wind and solar power generation.

Funded by a $2 million grant from the U.S. National Science Foundation, the four-year study aims to develop novel ceramic materials for use in a new approach to energy storage. Rather than batteries, the researchers will develop nanostructured capacitors to store energy that is generated and converted by wind turbines and solar panels. With an extremely high power density and the ability to very quickly charge and discharge, these nanoengineered capacitors could be a game-changer impacting a wide range of applications, from energy production to electronics to national defense.

“The transformative nature of capacitive energy storage – a totally new approach to energy storage – will have a tremendous impact on the increased use and efficiency of wind and solar power, as well as conventional coal, nuclear, and hydroelectric generation,” said Doug Chrisey, professor in the Department of Materials Science and Engineering at Rensselaer, who is leading the study. “Our proposed capacitors will be smaller, lighter, and more efficient than today’s batteries, and with no moving parts the capacitors should last forever. Everyone is looking for a truly innovative material to help meet future energy requirements, and we’re confident that our novel ceramic will help advance that conversation.”

The grant was awarded through the NSF Emerging Frontiers in Research and Innovation (EFRI) Program, overseen by the NSF Engineering Directorate, which identifies and supports interdisciplinary initiatives at the emerging frontier of engineering research and education. For the study, Chrisey is partnering with renowned glass expert and Rensselaer Professor Minoru Tomozawa, along with nanoscientist and University of Puerto Rico, Río Piedras Professor Ram S. Katiyar.

Unlike a battery, which supplies a continuous level of low power for long periods of time, a capacitor moves large amounts of power very quickly. The ideal solution for electrical energy storage, Chrisey said, will allow fast energy storage and discharge in as small a volume or mass as possible. To achieve this, the researchers will develop a nanostructured capacitor comprising extremely thin layers of a novel composite. The composite is a mix of ferroelectric nanopowder and low-melting, alkali-free glass. The result is a capacitor that can withstand high electric fields and maintain an extremely high dielectric constant – two critical metrics for measuring the effectiveness of energy storage materials.

In addition to optimizing and perfecting the composition of the novel ceramic material, Chrisey and team are tasked with developing new processes to make the material easily and in large quantities.

“Creating a novel ceramic material and developing a cost-effective, scalable method to achieve large-capacitive energy storage could be a big boost to our national economy and increase our global competitiveness,” Chrisey said. “What we need is an entirely new approach to energy storage, and we think ferroelectric glass composites could be the answer.”

For more information on Chrisey and his research at Rensselaer, visit:

http://mse.rpi.edu/faculty_details.cfm?facultyID=chrisd

Contact
Michael Mullaney
Rensselaer Polytechnic Institute
Troy, NY
518-276-6161
mullam@rpi.edu
www.rpi.edu/news
Visit the Rensselaer research and discovery blog: http://approach.rpi.edu
Follow us on Twitter: www.twitter.com/RPInews

Michael Mullaney | Newswise Science News
Further information:
http://www.rpi.edu/news

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>