Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rethinking Renewables: A New Approach to Energy Storage for Wind and Solar

29.09.2010
Rensselaer Polytechnic Institute Researchers Win $2 Million NSF Grant To Develop Capacitive Energy Storage System for Renewable Power Sources

Researchers at Rensselaer Polytechnic Institute are leading a new $2 million study to help overcome a key bottleneck slowing the proliferation of large-scale wind and solar power generation.

Funded by a $2 million grant from the U.S. National Science Foundation, the four-year study aims to develop novel ceramic materials for use in a new approach to energy storage. Rather than batteries, the researchers will develop nanostructured capacitors to store energy that is generated and converted by wind turbines and solar panels. With an extremely high power density and the ability to very quickly charge and discharge, these nanoengineered capacitors could be a game-changer impacting a wide range of applications, from energy production to electronics to national defense.

“The transformative nature of capacitive energy storage – a totally new approach to energy storage – will have a tremendous impact on the increased use and efficiency of wind and solar power, as well as conventional coal, nuclear, and hydroelectric generation,” said Doug Chrisey, professor in the Department of Materials Science and Engineering at Rensselaer, who is leading the study. “Our proposed capacitors will be smaller, lighter, and more efficient than today’s batteries, and with no moving parts the capacitors should last forever. Everyone is looking for a truly innovative material to help meet future energy requirements, and we’re confident that our novel ceramic will help advance that conversation.”

The grant was awarded through the NSF Emerging Frontiers in Research and Innovation (EFRI) Program, overseen by the NSF Engineering Directorate, which identifies and supports interdisciplinary initiatives at the emerging frontier of engineering research and education. For the study, Chrisey is partnering with renowned glass expert and Rensselaer Professor Minoru Tomozawa, along with nanoscientist and University of Puerto Rico, Río Piedras Professor Ram S. Katiyar.

Unlike a battery, which supplies a continuous level of low power for long periods of time, a capacitor moves large amounts of power very quickly. The ideal solution for electrical energy storage, Chrisey said, will allow fast energy storage and discharge in as small a volume or mass as possible. To achieve this, the researchers will develop a nanostructured capacitor comprising extremely thin layers of a novel composite. The composite is a mix of ferroelectric nanopowder and low-melting, alkali-free glass. The result is a capacitor that can withstand high electric fields and maintain an extremely high dielectric constant – two critical metrics for measuring the effectiveness of energy storage materials.

In addition to optimizing and perfecting the composition of the novel ceramic material, Chrisey and team are tasked with developing new processes to make the material easily and in large quantities.

“Creating a novel ceramic material and developing a cost-effective, scalable method to achieve large-capacitive energy storage could be a big boost to our national economy and increase our global competitiveness,” Chrisey said. “What we need is an entirely new approach to energy storage, and we think ferroelectric glass composites could be the answer.”

For more information on Chrisey and his research at Rensselaer, visit:

http://mse.rpi.edu/faculty_details.cfm?facultyID=chrisd

Contact
Michael Mullaney
Rensselaer Polytechnic Institute
Troy, NY
518-276-6161
mullam@rpi.edu
www.rpi.edu/news
Visit the Rensselaer research and discovery blog: http://approach.rpi.edu
Follow us on Twitter: www.twitter.com/RPInews

Michael Mullaney | Newswise Science News
Further information:
http://www.rpi.edu/news

More articles from Power and Electrical Engineering:

nachricht How protons move through a fuel cell
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety
21.06.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>