Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simplifying oil and gas exploration:The Golden Zone is about to become a key concept in the petroleum and gas industry.

19.10.2007
Researchers in Stavanger, Norway, have developed a theory which can be important for future oil and gas exploration.

The Golden Zone is the name of a an underground zone where temperatures range between 60 and 120 C. The name refers to a new discovery that 90 per cent of the world's oil and gas reserves are to be found just there.

The theory has been tested and verified against a global database containing 120 000 oil fields under production, This gives geologists a tool that makes it simpler and cheaper to find new offshore oil and gas reserves.

The theory of the Golden Zone has come as a surprise to the petroleum industry. The theory has been developed over a period of ten years by the former senior researcher, now dean, Per Arne Bjørkum at the Faculty of Technology and Science at the University of Stavanger, and the researchers Paul Nadeau and Olav Walderhaug at Statoil.

This tool makes the work easier because the companies can now concentrate their resources on exploration at this temperature range. Outside this interval of 60 to 120 C, particularly above 120 C, the chances of finding oil and gas are much slimmer.

Earlier it was assumed that the formation of oil and gas was related to temperature. The new discovery is that temperature decides where most of the lighter oil and gas is trapped in the reservoirs.

The increase of temperature downward into the reservoirs varies from place to place. Therefore the zone is to be found at different depths. On the Norwegian continental shelf it is located at depths ranging from two to four kilometers, while in other reservoirs it may be found somewhere between one to two km. These are the so-called warm reservoirs. In cold reservoirs the zone is located at about four to eight kilometers down.

The fact that oil and gas coexist within the same temperature zone is a new discovery and a surprise. Gas is formed at higher temperatures than oil. Consequently it has been a standard rule that there should be more gas than oil the deeper one drilled into the reservoir. The reason why this is not the case is covered by the new theory which predicts that both oil and gas escape through fissures formed at 120 C. But nobody had checked it, Bjørkum says.

Obviously it had to be like that according to the new theory, he says.

The hope of finding much more oil the deeper we drilled into the basement of the sedimentary basins, is about to fade. Not everybody likes to hear this because they want to keep up hope. The main theory about the location of oil and gas in reservoirs was developed at the beginning of research more than ten years ago. In our opinion the theory was both complicated and inconsistent. The Golden Zone has been discovered because we now think differently, Bjørkum says.

He adds that there is also a good deal of oil in sediments of temperatures lower than 60 C, but the oil there is heavier and of poorer quality. It is referred to as heavy oil because bacteria eat the lighter and liquid oil components.

Even if the price of oil is now so high that we can produce more heavy oil, there are great environmental problems linked to it. It is difficult to refine, and for the time being there is no treatment capacity. It takes more than ten years to build new refineries.

However, there is enough coal in the world to last for several hundred years of energy consumption. If we can find an efficient and environmentally friendly way of producing oil and gas from coal it could be our way out, Bjørkum adds.

Bjørkum thinks that the greatest challenge just now is to produce enough oil and gas for the next ten years.

Right now the companies do not find enough oil and gas to replace what they produce. During the last 25 years exploration has not managed to match the quantity produced. When exploring it is important to be as realistic as possible. That is why we are depleting our resources and makes it mandatory to extract as much as possible from our finds. In this way we may contribute to postponing the crisis many see coming, and that is also the starting point for research at UiS. The new knowledge concerning the whereabouts of oil and gas makes us more efficient in our exploration than earlier.

Bjørkum thinks that the world may easily find itself in a situation of fighting wars over the access to oil and gas.

The likelihood of war increases if serious shortage comes earlier than the world expects. In that perspective sound knowledge about where oil and gas are located may also contribute to preserving world peace.

Silje Stangeland | alfa
Further information:
http://www.uis.no/news/article7071-50.html

More articles from Power and Electrical Engineering:

nachricht Fraunhofer ISE Supports Market Development of Solar Thermal Power Plants in the MENA Region
21.02.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast
20.02.2018 | University of Warwick

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>