Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University unveils £1 million high-tech test facility

30.04.2007
The University of Manchester and Rolls-Royce have unveiled a new £1 million experimental facility, which will boost the development of high-tech electrical systems for planes, ships and energy generation.

It complements the existing Rolls-Royce University Technology Centre (UTC) and will develop and evaluate ultra-compact and intelligent electrical networks for use in a range of products including Uninhabited Autonomous Vehicles (UAVs).

Housed in the School of Electrical and Electronic Engineering (EEE), the facility is being jointly funded by Rolls-Royce and the Systems Engineering Autonomous Systems Defence Technology Centre (SEAS-DTC) programme co-ordinated by BAE Systems and sponsored by The Ministry of Defence.

Dr Sandy Smith, Director of the Rolls-Royce UTC at The University of Manchester, said: “Increased use of electrical technology in areas like aerospace means the next generation aircraft will have highly sophisticated electrical systems that offer greater operational flexibility, improved fuel consumption and lower environmental emissions.”

Dr Stephen Long, facility project manager at Rolls-Royce, said: “In the future we will see a rapid growth in the use of uninhabited land, sea and air vehicles for military, civil and public use. The electrical systems requirements for these platforms are particularly demanding because they need to be compact, flexible and intelligent.”

Professor John Perkins, Vice-President and Dean of The Faculty of Engineering and Physical Sciences at The University of Manchester, said: “This excellent new facility strengthens further our productive relationship with Rolls-Royce, which has been delivering exciting results and innovations. This latest development will allow further exchange of skills between The University and Rolls-Royce and will provide fresh opportunities for training and development.”

Phill Cartwright, Rolls-Royce Head of Electrical Systems, added: “Our investment in this area reflects the rapidly increasing importance of electrical systems in each of Rolls-Royce's key markets of aerospace, marine and energy.

“The quest for enhanced electrical technologies is driven by customer demands for improvements in performance, capabilities and services. Emerging electrical technologies have the potential to meet these demands by enabling major improvements in system integration and product functionality.”

Police and fire services are becoming increasingly interested in uninhabited air vehicles for surveillance purposes. They could save the emergency services valuable time and money and also allow access to situations too dangerous for manned craft.

Rolls-Royce established the University Technology Centre (UTC) in Manchester in 2004 to pursue research into innovative electrical technologies for aerospace, marine and energy applications. It is part of the School of Electrical and Electronic Engineering’s Power Conversion Group.

Research is focused on designing electrical systems which are lighter, more flexible and reliable than the heavy pneumatic and mechanical systems used on ships and planes today.

The UTC specialises in the design of electrical systems for air, sea and land vehicles which operate in ‘extreme environments’ like those experienced by planes at altitudes of 60,000ft and by ships submerged in freezing waters.

The Manchester UTC works in collaboration with Rolls-Royce, and two other electrical UTCs at the Universities of Sheffield and Strathclyde.

It is based just one mile from where Charles Rolls and Henry Royce forged their original partnership at Manchester’s Midland Hotel in 1904.

Jon Keighren | alfa
Further information:
http://www.rolls-royce.com
http://www.manchester.ac.uk

More articles from Power and Electrical Engineering:

nachricht Stanford researchers develop a new type of soft, growing robot
21.07.2017 | Stanford University

nachricht Team develops fast, cheap method to make supercapacitor electrodes
18.07.2017 | University of Washington

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>