Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microorganisms one part of the solution to energy problem, says report

20.11.2006
The answer to one of the world's largest problems – the need for clean, renewable sources of energy – might just come from some of the world's smallest inhabitants – bacteria – according to a new report, Microbial Energy Conversion, released by the American Academy of Microbiology

"Imagine the future of energy. The future might look like a new power plant on the edge of town – an inconspicuous bioreactor that takes in yard waste and locally-grown crops like corn and woodchips, and churns out electricity to area homes and businesses," says Judy Wall of the University of Missouri – Columbia, one of the authors of the report.

Or the future may take the form of a stylish-looking car that refills its tank at hydrogen stations. "Maybe the future of energy looks like a device on the roof of your home – a small appliance, connected to the household electric system, that uses sunlight and water to produce the electricity that warms your home, cooks your food, powers your television and washes your clothes. All these futuristic energy technologies may become reality some day, thanks to the work of the smallest living creatures on earth: microorganisms," Wall says.

The world faces a potentially crippling energy crisis in the next 30 to 50 years, according to the report. Additionally, the burning of fossil fuels and the resulting release of carbon dioxide and combustion pollutants have brought about global climate change, the effects of which we are only beginning to understand. The means of preventing the twin catastrophes of energy scarcity and environmental ruin are unclear, but one part of the solution may lie in microbial energy conversion.

The primary method of microbial energy conversion highlighted by the report is the use of microbes to produce alternative fuels. The report describes in detail the various methods by which microorganisms can and are being used to produce numerous fuels including ethanol, hydrogen, methane and butanol. It also discusses the advantages, disadvantages and technical difficulties of each production methodology as well as outlining future research needs. The report also focuses on the relatively new field of microbial fuel cells, in which bacteria are used to convert food sources directly to electrical energy.

"The study of microbial fuel cells is in it infancy, and yield and current density are low in today's systems, but the potential to make great leaps of progress in yield and performance is great," says Wall.

Angelo Bouselli | EurekAlert!
Further information:
http://www.asm.org

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>