Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT designs 'invisible,' floating wind turbines

19.09.2006
An MIT researcher has a vision: Four hundred huge offshore wind turbines are providing onshore customers with enough electricity to power several hundred thousand homes, and nobody standing onshore can see them. The trick? The wind turbines are floating on platforms a hundred miles out to sea, where the winds are strong and steady.

Today's offshore wind turbines usually stand on towers driven deep into the ocean floor. But that arrangement works only in water depths of about 15 meters or less. Proposed installations are therefore typically close enough to shore to arouse strong public opposition.

Paul D. Sclavounos, a professor of mechanical engineering and naval architecture, has spent decades designing and analyzing large floating structures for deep-sea oil and gas exploration. Observing the wind-farm controversies, he thought, "Wait a minute. Why can't we simply take those windmills and put them on floaters and move them farther offshore, where there's plenty of space and lots of wind?"

In 2004, he and his MIT colleagues teamed up with wind-turbine experts from the National Renewable Energy Laboratory (NREL) to integrate a wind turbine with a floater. Their design calls for a tension leg platform (TLP), a system in which long steel cables, or "tethers," connect the corners of the platform to a concrete-block or other mooring system on the ocean floor. The platform and turbine are thus supported not by an expensive tower but by buoyancy. "And you don't pay anything to be buoyant," said Sclavounos.

According to their analyses, the floater-mounted turbines could work in water depths ranging from 30 to 200 meters. In the Northeast, for example, they could be 50 to 150 kilometers from shore. And the turbine atop each platform could be big--an economic advantage in the wind-farm business. The MIT-NREL design assumes a 5.0 megawatt (MW) experimental turbine now being developed by industry. (Onshore units are 1.5 MW, conventional offshore units, 3.6 MW.)

Ocean assembly of the floating turbines would be prohibitively expensive because of their size: the wind tower is fully 90 meters tall, the rotors about 140 meters in diameter. So the researchers designed them to be assembled onshore--probably at a shipyard--and towed out to sea by a tugboat. To keep each platform stable, cylinders inside it are ballasted with concrete and water. Once on site, the platform is hooked to previously installed tethers. Water is pumped out of the cylinders until the entire assembly lifts up in the water, pulling the tethers taut.

The tethers allow the floating platforms to move from side to side but not up and down--a remarkably stable arrangement. According to computer simulations, in hurricane conditions the floating platforms--each about 30 meters in diameter--would shift by one to two meters, and the bottom of the turbine blades would remain well above the peak of even the highest wave. The researchers are hoping to reduce the sideways motion still further by installing specially designed dampers similar to those used to steady the sway of skyscrapers during high winds and earthquakes.

Sclavounos estimates that building and installing his floating support system should cost a third as much as constructing the type of truss tower now planned for deep-water installations. Installing the tethers, the electrical system, and the cable to the shore is standard procedure. Because of the strong offshore winds, the floating turbines should produce up to twice as much electricity per year (per installed megawatt) as wind turbines now in operation. And because the wind turbines are not permanently attached to the ocean floor, they are a movable asset. If a company with 400 wind turbines serving the Boston area needs more power for New York City, it can unhook some of the floating turbines and tow them south.

Encouraged by positive responses from wind, electric power, and oil companies, Sclavounos hopes to install a half-scale prototype south of Cape Cod. "We'd have a little unit sitting out there andScould show that this thing can float and behave the way we're saying it will," he said. "That's clearly the way to get going."

This research was supported by the National Renewable Energy Laboratory.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>