Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gold-tipped nanocrystals developed by Hebrew University researchers

18.06.2004



“Nanodumbells” – gold-tipped nanocrystals which can be used as highly-efficient building blocks for devices in the emerging nanotechnology revolution – have been developed by researchers at the Hebrew University of Jerusalem.

The technology, developed by a research group headed by Prof. Uri Banin of the Department of Physical Chemistry and the Center for Nanoscience and Nanotechnology of the Hebrew University, is described in an article in the current issue of Science magazine.

The nanodumbells – shaped somewhat like mini-weightlifting bars – offer a solution to problems of building new, nanocrystal transistors, the basic component of computer chips.



Semiconductor nanocrystals are tiny particles with dimensions of merely a few nanometers. A nanometer (nm) is one-billionth of a meter, or about a hundred-thousandth of the diameter of a human hair. These nanocrystals exhibit unique optical and electrical properties that are controlled by modifying their particle size, composition and shape, creating promising building blocks for future nanotechnology devices, such as mini-computers, nanosensors for chemical and biological molecules, novel solar-cell devices, or for various biomedical applications.

The challenge that lies ahead in adapting these nanocrystals to real-world application lies in wiring them to operate in electronic circuits. How, in the manufacturing process, will it be possible to join billions of them together and incorporate them into a single, integrated, electrical circuit? Another problem is that of establishing good electrical contact in order to ensure speedy and faultless channels of communication.

The new technology developed by Prof. Banin and his team provides the solution to these two limiting problems. They succeeded in attaching gold tips onto nanorods by a simple chemical reaction. The resultant structure resembles a nanodumbbell, in which the central, nanocrystal, semiconductor part of the rod is linked via a strong chemical bond to the gold tips. These nanodumbbells provide strong chemical bonds between the gold and the semiconductor, leading to good electrical connectivity. This provides the path towards solving the problem of wiring the nanocrystals intro electrical circuitry.

The chemical bonding quality of the gold also helps solve the difficulties involved in manufacturing simultaneously up to billions of circuits. By adding to the nanodumbbell solution specific “linker” molecules, the gold tips are attracted to each other, thus creating self-assembling chain structures of nanocrystals, linked end-to-end. This strategy can serve as the basis for future manufacturing that will connect billions of nanorods to nanoelectronic circuitry. It is also possible to create other shapes, such as tetrapods, in which four arms expand from a central unit, making gold-tipped “anchor” points for different forms of self-assembly and wiring. This development will speed up the integration of semiconductor nanorods and tetrapods into real-world nanoelectronic applications.

Jerry Barach | University of Jerusalem
Further information:
http://www.huji.ac.il

More articles from Power and Electrical Engineering:

nachricht Stretchable biofuel cells extract energy from sweat to power wearable devices
22.08.2017 | University of California - San Diego

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>