Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT’s plasmatron cuts diesel bus emissions, promises better gas engine efficiency

22.10.2003


MIT’s plasmatron coupled with an exhaust treatment catalyst removed 90 percent of the smog-producing nitrogen oxides (NOx) emitted from this bus.
PHOTO COURTESY / ARVINMERITOR


A bus in Indiana is the latest laboratory for MIT’s plasmatron reformer, a small device its developers believe could significantly cut the nation’s oil consumption as well as noxious emissions from a variety of vehicles.

The work will be the subject of an invited talk next Thursday, October 30, at a meeting of the American Physical Society’s Division of Plasma Physics in Albuquerque, NM.

The researchers and colleagues from industry report that the plasmatron, used with an exhaust treatment catalyst on a diesel engine bus, removed up to 90 percent of nitrogen oxides (NOx) from the bus’s emissions. Nitrogen oxides are the primary components of smog.



The plasmatron reformer also cut in half the amount of fuel needed for the removal process. “The absorption catalyst approach under consideration for diesel exhaust NOx removal requires additional fuel to work,” explained Daniel R. Cohn, one of the leaders of the team and head of the Plasma Technology Division at MIT’s Plasma Science and Fusion Center (PSFC). “The plasmatron reformer reduced that amount of fuel by a factor of two compared to a system without the plasmatron.”

Cohn noted that the plasmatron reformer also allowed the NOx absorption catalyst to be effective at the low exhaust temperatures characteristic of urban use.

These results, reported at a U.S. Department of Energy Diesel Engine Emissions Reduction (DEER) meeting in August, indicate that the plasmatron reformer, in conjunction with an NOx absorber catalyst, could be one of the most promising ways to meet stricter emissions limits for all heavy trucks and buses. The Environmental Protection Agency plans to institute the new limits by 2007.

“Diesel-engine vehicles generally do not have exhaust treatment systems,” Cohn said, adding that treating diesel exhaust is much more difficult than gasoline exhaust.

Under development for the last six years, the plasmatron is an onboard "oil reformer" that converts a variety of fuels into high-quality, hydrogen-rich gas. Adding a relatively modest amount of such gas to the gasoline powering a car or to a diesel vehicle’s exhaust is known to have benefits for cutting the emissions of pollutants. "Prior to the plasmatron reformer development, there was no attractive way to produce that hydrogen on board," said Cohn.

His colleagues are Leslie Bromberg and Alexander Rabinovich of the PSFC; John Heywood, director of MIT’s Sloan Automotive Lab and the Sun Jae Professor of Mechanical Engineering; and Rudolf M. Smaling, a graduate student in the Engineering Systems Division. Smaling is an engineering manager from ArvinMeritor, a major automotive and heavy truck components company that has licensed the plasmatron technology from MIT. The bus engine tests were performed at the company’s facility in Columbus, Ind., by an ArvinMeritor team.

Toward increased gasoline engine efficiency

The team is finding that the device could make vehicles cleaner and more efficient, with a potentially significant impact on oil consumption.

"If widespread use of plasmatron hydrogen-enhanced gasoline engines could eventually increase the average efficiency of cars and other light-duty vehicles by 20 percent, the amount of gasoline that could be saved would be around 25 billion gallons a year," Cohn said. That corresponds to around 70 percent of the oil that is currently imported by the United States from the Middle East."

The Bush administration has made development of a hydrogen-powered vehicle a priority, Heywood noted. "That’s an important goal, as it could lead to more efficient, cleaner vehicles, but is it the only way to get there? Engines using plasmatron reformer technology could have a comparable impact, but in a much shorter time frame," he said.

"Our objective is to have the plasmatron in production—and in vehicles—by 2010," Smaling said. ArvinMeritor is working with a vehicle concept specialist company to build a proof-of-concept vehicle that incorporates the plasmatron in an internal combustion engine. "We’d like to have a driving vehicle in one and a half years to demonstrate the benefits," Smaling said.

In the meantime, the team continues to improve the base technology. At the DEER meeting, Bromberg, for example, reported cutting the plasmatron’s consumption of electric power "by a factor of two to three."

The work is funded by the Department of Energy’s FreedomCAR and Vehicle Technologies Program and by ArvinMeritor.

Elizabeth Thomson | MIT
Further information:
http://web.mit.edu/newsoffice/nr/2003/plasmatron.html

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>