Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tufts researchers find new cost-effective catalyst for hydrogen production for fuel cells

04.07.2003


Discovery could ignite ‘engine of the future’ — Eliminating millions of dollars on use of precious metals

Researchers at Tufts University have discovered that it’s possible to make hydrogen from fossil fuels using far less platinum or gold than current fuel processing technology has required. Their research shows that 90 percent of precious metals used today may be removed from the catalyst without affecting its ability to produce hydrogen.

This finding could have potential cost savings of millions of dollars in the materials required to commercialize the fuel cell technology.



The research will be published in the July 3 edition of "Science Express," the online version of the journal Science that provides rapid electronic publication of timely and important research papers. The article also will be published in Science later this summer.

A fuel cell consists of two electrodes sandwiched around an electrolyte. Hydrogen fed to the one electrode (anode) passes through the electrolyte in the form of protons and combines with oxygen on the other electrode (cathode) making water and producing heat. Electricity is generated in the process. A fuel cell will produce energy in the form of electricity and heat as long as fuel and oxygen are supplied. To produce fuel-cell quality hydrogen, an important step involves the removal of any by-product carbon monoxide, which poisons the fuel cell anode catalyst.

"A lot of people have spent a lot of time studying the properties of gold and platinum nanoparticles that are used to catalyze the reaction of carbon monoxide with water to make hydrogen and carbon dioxide," said Maria Flytzani-Stephanopoulos, professor of chemical and biological engineering at Tufts and the lead researcher of the project. "We find that for this reaction over a cerium oxide catalyst carrying the gold or platinum, metal nanoparticles are not important. Only a tiny amount of the precious metal in non metallic form is needed to create the active catalyst. Our finding will help researchers find a cost-effective way to produce clean energy from fuel cells in the near future"

She and her two colleagues, doctoral student Qi Fu and research professor Howard Saltsburg, were funded by a $300,000 three-year grant from the National Science Foundation, and have filed a provisional patent for their research. Their cutting-edge work in catalytic fuel processing to generate hydrogen for fuel cell applications is one of the major undertakings at Tufts’ Science and Technology Center at the University’s Medford campus.

The Tufts researchers’ article is based on the "water-gas shift" reaction they use to make hydrogen from water and carbon monoxide over cerium oxide loaded with gold or platinum. Typically, a loading of 1-10 weight percent of gold or other precious metals is used to make an effective catalyst. But the Tufts team discovered that, after stripping the gold with a cyanide solution, the catalyst was just as active with a slight amount of the gold remaining – one-tenth the normal amount used.

According to Flytzani-Stephanopoulos, "This finding is significant because it shows that metallic nanoparticles are mere ’spectator species’ for some reactions, such as the water-gas shift. The phenomenon may be more general, since we show that it also holds for platinum and may also hold true for other metals and metal oxide supports, such as titanium and iron oxide."

She adds, "It opens the way for new catalyst designs so more hydrogen can be produced with less precious metal. This can pave the way for cost-effective clean energy production from fuel cells in the near future."

Fuel cells currently are being used on a trial basis in some buses, cars and even hotels, but they’re expensive. It may take up to 10 years until the technology is used in transportation and by the general population. (Since the 1960s, one type of fuel cell has powered NASA’s spacecrafts.)

"We’ve raised the issue of now having to look back and see if less precious metal may be used in other similar applications," said Saltsburg. There’s much more to be done, and that’s what makes the research exciting."


About the researches

Maria Flytzani-Stephanopoulos has been active in the field of environmental catalysis for the past 20 years. In the early 1980s she was a member of the technical staff at the Jet Propulsion Laboratory in Pasadena, Calif., where she conducted research in autothermal and steam reforming of fuels for fuel cell applications and in coal gas desulfurization over regenerable mixed oxide sorbents. She also worked at MIT’s chemical engineering department on novel catalysts for air pollution control prior to joining Tufts in 1994. Flytzani-Stephanopoulos has directed many projects sponsored by the government and industry, holds seven patents, has published more than 100 technical papers and has received several honors and awards, including three NASA certificates of recognition, a National Science Foundation career advancement award, a NASA achievement award, and the Raytheon Professorship in Pollution Prevention at Tufts. She is the North and South American editor of the journal Applied Catalysis B: Environmental.

Howard Saltsburg has been active in the field of surface science and catalysis for 40 years. He has published seminal works in molecular beam scattering, solid electrolyte aided studies of catalytic reactions, and the use of microelectronic fabrication techniques to create controlled structure catalysts. He is a research professor of chemical and biological engineering at Tufts and professor emeritus of chemical engineering at the University of Rochester.

Qi Fu is a doctoral student in chemical and biological engineering at Tufts who recently received the Outstanding Engineering Graduate Researcher award. This research will form a significant part of her dissertation. Her bachelor’s and master’s degrees are from East China University of Science and Technology, Shanghai, and from the Research Institute of Petroleum Processing, Beijing, People’s Republic of China.

Tufts University, located on three Massachusetts campuses in Boston, Medford/Somerville, and Grafton, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate and professional programs across the University’s eight schools is widely encouraged.

Craig LeMoult | EurekAlert!
Further information:
http://www.tufts.edu/

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>