Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tufts researchers find new cost-effective catalyst for hydrogen production for fuel cells

04.07.2003


Discovery could ignite ‘engine of the future’ — Eliminating millions of dollars on use of precious metals

Researchers at Tufts University have discovered that it’s possible to make hydrogen from fossil fuels using far less platinum or gold than current fuel processing technology has required. Their research shows that 90 percent of precious metals used today may be removed from the catalyst without affecting its ability to produce hydrogen.

This finding could have potential cost savings of millions of dollars in the materials required to commercialize the fuel cell technology.



The research will be published in the July 3 edition of "Science Express," the online version of the journal Science that provides rapid electronic publication of timely and important research papers. The article also will be published in Science later this summer.

A fuel cell consists of two electrodes sandwiched around an electrolyte. Hydrogen fed to the one electrode (anode) passes through the electrolyte in the form of protons and combines with oxygen on the other electrode (cathode) making water and producing heat. Electricity is generated in the process. A fuel cell will produce energy in the form of electricity and heat as long as fuel and oxygen are supplied. To produce fuel-cell quality hydrogen, an important step involves the removal of any by-product carbon monoxide, which poisons the fuel cell anode catalyst.

"A lot of people have spent a lot of time studying the properties of gold and platinum nanoparticles that are used to catalyze the reaction of carbon monoxide with water to make hydrogen and carbon dioxide," said Maria Flytzani-Stephanopoulos, professor of chemical and biological engineering at Tufts and the lead researcher of the project. "We find that for this reaction over a cerium oxide catalyst carrying the gold or platinum, metal nanoparticles are not important. Only a tiny amount of the precious metal in non metallic form is needed to create the active catalyst. Our finding will help researchers find a cost-effective way to produce clean energy from fuel cells in the near future"

She and her two colleagues, doctoral student Qi Fu and research professor Howard Saltsburg, were funded by a $300,000 three-year grant from the National Science Foundation, and have filed a provisional patent for their research. Their cutting-edge work in catalytic fuel processing to generate hydrogen for fuel cell applications is one of the major undertakings at Tufts’ Science and Technology Center at the University’s Medford campus.

The Tufts researchers’ article is based on the "water-gas shift" reaction they use to make hydrogen from water and carbon monoxide over cerium oxide loaded with gold or platinum. Typically, a loading of 1-10 weight percent of gold or other precious metals is used to make an effective catalyst. But the Tufts team discovered that, after stripping the gold with a cyanide solution, the catalyst was just as active with a slight amount of the gold remaining – one-tenth the normal amount used.

According to Flytzani-Stephanopoulos, "This finding is significant because it shows that metallic nanoparticles are mere ’spectator species’ for some reactions, such as the water-gas shift. The phenomenon may be more general, since we show that it also holds for platinum and may also hold true for other metals and metal oxide supports, such as titanium and iron oxide."

She adds, "It opens the way for new catalyst designs so more hydrogen can be produced with less precious metal. This can pave the way for cost-effective clean energy production from fuel cells in the near future."

Fuel cells currently are being used on a trial basis in some buses, cars and even hotels, but they’re expensive. It may take up to 10 years until the technology is used in transportation and by the general population. (Since the 1960s, one type of fuel cell has powered NASA’s spacecrafts.)

"We’ve raised the issue of now having to look back and see if less precious metal may be used in other similar applications," said Saltsburg. There’s much more to be done, and that’s what makes the research exciting."


About the researches

Maria Flytzani-Stephanopoulos has been active in the field of environmental catalysis for the past 20 years. In the early 1980s she was a member of the technical staff at the Jet Propulsion Laboratory in Pasadena, Calif., where she conducted research in autothermal and steam reforming of fuels for fuel cell applications and in coal gas desulfurization over regenerable mixed oxide sorbents. She also worked at MIT’s chemical engineering department on novel catalysts for air pollution control prior to joining Tufts in 1994. Flytzani-Stephanopoulos has directed many projects sponsored by the government and industry, holds seven patents, has published more than 100 technical papers and has received several honors and awards, including three NASA certificates of recognition, a National Science Foundation career advancement award, a NASA achievement award, and the Raytheon Professorship in Pollution Prevention at Tufts. She is the North and South American editor of the journal Applied Catalysis B: Environmental.

Howard Saltsburg has been active in the field of surface science and catalysis for 40 years. He has published seminal works in molecular beam scattering, solid electrolyte aided studies of catalytic reactions, and the use of microelectronic fabrication techniques to create controlled structure catalysts. He is a research professor of chemical and biological engineering at Tufts and professor emeritus of chemical engineering at the University of Rochester.

Qi Fu is a doctoral student in chemical and biological engineering at Tufts who recently received the Outstanding Engineering Graduate Researcher award. This research will form a significant part of her dissertation. Her bachelor’s and master’s degrees are from East China University of Science and Technology, Shanghai, and from the Research Institute of Petroleum Processing, Beijing, People’s Republic of China.

Tufts University, located on three Massachusetts campuses in Boston, Medford/Somerville, and Grafton, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate and professional programs across the University’s eight schools is widely encouraged.

Craig LeMoult | EurekAlert!
Further information:
http://www.tufts.edu/

More articles from Power and Electrical Engineering:

nachricht Researchers take next step toward fusion energy
16.11.2017 | Texas A&M University

nachricht Desert solar to fuel centuries of air travel
16.11.2017 | SolarPACES

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>