Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tufts researchers find new cost-effective catalyst for hydrogen production for fuel cells

04.07.2003


Discovery could ignite ‘engine of the future’ — Eliminating millions of dollars on use of precious metals

Researchers at Tufts University have discovered that it’s possible to make hydrogen from fossil fuels using far less platinum or gold than current fuel processing technology has required. Their research shows that 90 percent of precious metals used today may be removed from the catalyst without affecting its ability to produce hydrogen.

This finding could have potential cost savings of millions of dollars in the materials required to commercialize the fuel cell technology.



The research will be published in the July 3 edition of "Science Express," the online version of the journal Science that provides rapid electronic publication of timely and important research papers. The article also will be published in Science later this summer.

A fuel cell consists of two electrodes sandwiched around an electrolyte. Hydrogen fed to the one electrode (anode) passes through the electrolyte in the form of protons and combines with oxygen on the other electrode (cathode) making water and producing heat. Electricity is generated in the process. A fuel cell will produce energy in the form of electricity and heat as long as fuel and oxygen are supplied. To produce fuel-cell quality hydrogen, an important step involves the removal of any by-product carbon monoxide, which poisons the fuel cell anode catalyst.

"A lot of people have spent a lot of time studying the properties of gold and platinum nanoparticles that are used to catalyze the reaction of carbon monoxide with water to make hydrogen and carbon dioxide," said Maria Flytzani-Stephanopoulos, professor of chemical and biological engineering at Tufts and the lead researcher of the project. "We find that for this reaction over a cerium oxide catalyst carrying the gold or platinum, metal nanoparticles are not important. Only a tiny amount of the precious metal in non metallic form is needed to create the active catalyst. Our finding will help researchers find a cost-effective way to produce clean energy from fuel cells in the near future"

She and her two colleagues, doctoral student Qi Fu and research professor Howard Saltsburg, were funded by a $300,000 three-year grant from the National Science Foundation, and have filed a provisional patent for their research. Their cutting-edge work in catalytic fuel processing to generate hydrogen for fuel cell applications is one of the major undertakings at Tufts’ Science and Technology Center at the University’s Medford campus.

The Tufts researchers’ article is based on the "water-gas shift" reaction they use to make hydrogen from water and carbon monoxide over cerium oxide loaded with gold or platinum. Typically, a loading of 1-10 weight percent of gold or other precious metals is used to make an effective catalyst. But the Tufts team discovered that, after stripping the gold with a cyanide solution, the catalyst was just as active with a slight amount of the gold remaining – one-tenth the normal amount used.

According to Flytzani-Stephanopoulos, "This finding is significant because it shows that metallic nanoparticles are mere ’spectator species’ for some reactions, such as the water-gas shift. The phenomenon may be more general, since we show that it also holds for platinum and may also hold true for other metals and metal oxide supports, such as titanium and iron oxide."

She adds, "It opens the way for new catalyst designs so more hydrogen can be produced with less precious metal. This can pave the way for cost-effective clean energy production from fuel cells in the near future."

Fuel cells currently are being used on a trial basis in some buses, cars and even hotels, but they’re expensive. It may take up to 10 years until the technology is used in transportation and by the general population. (Since the 1960s, one type of fuel cell has powered NASA’s spacecrafts.)

"We’ve raised the issue of now having to look back and see if less precious metal may be used in other similar applications," said Saltsburg. There’s much more to be done, and that’s what makes the research exciting."


About the researches

Maria Flytzani-Stephanopoulos has been active in the field of environmental catalysis for the past 20 years. In the early 1980s she was a member of the technical staff at the Jet Propulsion Laboratory in Pasadena, Calif., where she conducted research in autothermal and steam reforming of fuels for fuel cell applications and in coal gas desulfurization over regenerable mixed oxide sorbents. She also worked at MIT’s chemical engineering department on novel catalysts for air pollution control prior to joining Tufts in 1994. Flytzani-Stephanopoulos has directed many projects sponsored by the government and industry, holds seven patents, has published more than 100 technical papers and has received several honors and awards, including three NASA certificates of recognition, a National Science Foundation career advancement award, a NASA achievement award, and the Raytheon Professorship in Pollution Prevention at Tufts. She is the North and South American editor of the journal Applied Catalysis B: Environmental.

Howard Saltsburg has been active in the field of surface science and catalysis for 40 years. He has published seminal works in molecular beam scattering, solid electrolyte aided studies of catalytic reactions, and the use of microelectronic fabrication techniques to create controlled structure catalysts. He is a research professor of chemical and biological engineering at Tufts and professor emeritus of chemical engineering at the University of Rochester.

Qi Fu is a doctoral student in chemical and biological engineering at Tufts who recently received the Outstanding Engineering Graduate Researcher award. This research will form a significant part of her dissertation. Her bachelor’s and master’s degrees are from East China University of Science and Technology, Shanghai, and from the Research Institute of Petroleum Processing, Beijing, People’s Republic of China.

Tufts University, located on three Massachusetts campuses in Boston, Medford/Somerville, and Grafton, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate and professional programs across the University’s eight schools is widely encouraged.

Craig LeMoult | EurekAlert!
Further information:
http://www.tufts.edu/

More articles from Power and Electrical Engineering:

nachricht Stanford researchers develop a new type of soft, growing robot
21.07.2017 | Stanford University

nachricht Team develops fast, cheap method to make supercapacitor electrodes
18.07.2017 | University of Washington

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>