Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


PNNL Awarded $6.8 Million for Marine, River Power Studies

The Department of Energy's Pacific Northwest National Laboratory will receive more than $6.8 million over three years to advance the production of renewable power from the natural movement of oceans and rivers.

The bulk of the funding - $3.45 million, or $1.15 million per year - allows PNNL to lead a project that will examine the environmental impacts of marine and hydrokinetic power. Marine power includes power harnessed from the flux of ocean tides and waves, while hydrokinetic refers to power generated from flowing freshwater without dams.

The project will prioritize the risks that these kinds of power generation can have on the environment and wildlife; conduct laboratory and field experiments to further investigate certain risks; and predict the long-term impact of full-scale energy installations.

"Understanding how harnessing marine and hydrokinetic energy can affect the environment is key," said Charlie Brandt, director of PNNL's Marine Sciences Laboratory in Sequim, Wash. "This work will help remove the roadblocks that currently prevent developers from putting tidal-, wave- and current-powered machines in the water."

Some of the issues researchers will examine include how fish and marine mammals are directly affected by water power devices - including induced electromagnetic fields, noise and blade strike - and whether producing these kinds of power could create "dead zones" by interfering with the ocean's circulation and nutrient patterns.

Staff from PNNL's offices in Seattle, Richland and Sequim, Wash., and Portland, Ore., will work together on the project. The study will also be done in collaboration with Oak Ridge National Laboratory, Sandia National Laboratories, the Northwest National Marine Renewable Energy Center (to which Oregon State University and the University of Washington belong), the University of Massachusetts-Dartmouth and Pacific Energy Ventures, an Oregon renewable energy consulting firm.

DOE's Office of Energy Efficiency & Renewable Energy also announced that PNNL would support four other advanced water power technology projects being led by other national laboratories. For two of the projects, PNNL will partner with the National Renewable Energy Laboratory and Sandia National Laboratories to use computational fluid dynamic models to develop and evaluate marine and hydrokinetic power devices. PNNL will also work with Argonne National Laboratory on advanced water flow forecasting to optimize the efficiency and environmental performance of hydroelectric power plants. And, finally, PNNL will team with Oak Ridge National Laboratory to increase fish passage safety and power production at existing dams, study how fish and wildlife are affected by the variable stream flows from dams, and measure and predict greenhouse gas emissions from dam reservoirs.

Pacific Northwest National Laboratory is a Department of Energy Office of Science national laboratory where interdisciplinary teams advance science and technology and deliver solutions to America's most intractable problems in energy, national security and the environment. PNNL employs 4,250 staff, has a $918 million annual budget, and has been managed by Ohio-based Battelle since the lab's inception in 1965. Follow PNNL on Facebook, Linked In and Twitter.

View original release at:

Franny White | Newswise Science News
Further information:

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>