Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PNNL Awarded $6.8 Million for Marine, River Power Studies

03.09.2009
The Department of Energy's Pacific Northwest National Laboratory will receive more than $6.8 million over three years to advance the production of renewable power from the natural movement of oceans and rivers.

The bulk of the funding - $3.45 million, or $1.15 million per year - allows PNNL to lead a project that will examine the environmental impacts of marine and hydrokinetic power. Marine power includes power harnessed from the flux of ocean tides and waves, while hydrokinetic refers to power generated from flowing freshwater without dams.

The project will prioritize the risks that these kinds of power generation can have on the environment and wildlife; conduct laboratory and field experiments to further investigate certain risks; and predict the long-term impact of full-scale energy installations.

"Understanding how harnessing marine and hydrokinetic energy can affect the environment is key," said Charlie Brandt, director of PNNL's Marine Sciences Laboratory in Sequim, Wash. "This work will help remove the roadblocks that currently prevent developers from putting tidal-, wave- and current-powered machines in the water."

Some of the issues researchers will examine include how fish and marine mammals are directly affected by water power devices - including induced electromagnetic fields, noise and blade strike - and whether producing these kinds of power could create "dead zones" by interfering with the ocean's circulation and nutrient patterns.

Staff from PNNL's offices in Seattle, Richland and Sequim, Wash., and Portland, Ore., will work together on the project. The study will also be done in collaboration with Oak Ridge National Laboratory, Sandia National Laboratories, the Northwest National Marine Renewable Energy Center (to which Oregon State University and the University of Washington belong), the University of Massachusetts-Dartmouth and Pacific Energy Ventures, an Oregon renewable energy consulting firm.

DOE's Office of Energy Efficiency & Renewable Energy also announced that PNNL would support four other advanced water power technology projects being led by other national laboratories. For two of the projects, PNNL will partner with the National Renewable Energy Laboratory and Sandia National Laboratories to use computational fluid dynamic models to develop and evaluate marine and hydrokinetic power devices. PNNL will also work with Argonne National Laboratory on advanced water flow forecasting to optimize the efficiency and environmental performance of hydroelectric power plants. And, finally, PNNL will team with Oak Ridge National Laboratory to increase fish passage safety and power production at existing dams, study how fish and wildlife are affected by the variable stream flows from dams, and measure and predict greenhouse gas emissions from dam reservoirs.

Pacific Northwest National Laboratory is a Department of Energy Office of Science national laboratory where interdisciplinary teams advance science and technology and deliver solutions to America's most intractable problems in energy, national security and the environment. PNNL employs 4,250 staff, has a $918 million annual budget, and has been managed by Ohio-based Battelle since the lab's inception in 1965. Follow PNNL on Facebook, Linked In and Twitter.

View original release at: http://www.pnl.gov/news/release.asp?id=396

Franny White | Newswise Science News
Further information:
http://www.pnl.gov

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>