Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PNNL Awarded $6.8 Million for Marine, River Power Studies

03.09.2009
The Department of Energy's Pacific Northwest National Laboratory will receive more than $6.8 million over three years to advance the production of renewable power from the natural movement of oceans and rivers.

The bulk of the funding - $3.45 million, or $1.15 million per year - allows PNNL to lead a project that will examine the environmental impacts of marine and hydrokinetic power. Marine power includes power harnessed from the flux of ocean tides and waves, while hydrokinetic refers to power generated from flowing freshwater without dams.

The project will prioritize the risks that these kinds of power generation can have on the environment and wildlife; conduct laboratory and field experiments to further investigate certain risks; and predict the long-term impact of full-scale energy installations.

"Understanding how harnessing marine and hydrokinetic energy can affect the environment is key," said Charlie Brandt, director of PNNL's Marine Sciences Laboratory in Sequim, Wash. "This work will help remove the roadblocks that currently prevent developers from putting tidal-, wave- and current-powered machines in the water."

Some of the issues researchers will examine include how fish and marine mammals are directly affected by water power devices - including induced electromagnetic fields, noise and blade strike - and whether producing these kinds of power could create "dead zones" by interfering with the ocean's circulation and nutrient patterns.

Staff from PNNL's offices in Seattle, Richland and Sequim, Wash., and Portland, Ore., will work together on the project. The study will also be done in collaboration with Oak Ridge National Laboratory, Sandia National Laboratories, the Northwest National Marine Renewable Energy Center (to which Oregon State University and the University of Washington belong), the University of Massachusetts-Dartmouth and Pacific Energy Ventures, an Oregon renewable energy consulting firm.

DOE's Office of Energy Efficiency & Renewable Energy also announced that PNNL would support four other advanced water power technology projects being led by other national laboratories. For two of the projects, PNNL will partner with the National Renewable Energy Laboratory and Sandia National Laboratories to use computational fluid dynamic models to develop and evaluate marine and hydrokinetic power devices. PNNL will also work with Argonne National Laboratory on advanced water flow forecasting to optimize the efficiency and environmental performance of hydroelectric power plants. And, finally, PNNL will team with Oak Ridge National Laboratory to increase fish passage safety and power production at existing dams, study how fish and wildlife are affected by the variable stream flows from dams, and measure and predict greenhouse gas emissions from dam reservoirs.

Pacific Northwest National Laboratory is a Department of Energy Office of Science national laboratory where interdisciplinary teams advance science and technology and deliver solutions to America's most intractable problems in energy, national security and the environment. PNNL employs 4,250 staff, has a $918 million annual budget, and has been managed by Ohio-based Battelle since the lab's inception in 1965. Follow PNNL on Facebook, Linked In and Twitter.

View original release at: http://www.pnl.gov/news/release.asp?id=396

Franny White | Newswise Science News
Further information:
http://www.pnl.gov

More articles from Power and Electrical Engineering:

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

nachricht Two holograms in one surface
12.12.2017 | California Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>