Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Photonics: The smaller the better

05.07.2012
Waveguides that combine metallic and semiconductor structures can be made more compact
Increasing the areal density at which electronic components can be integrated onto a computer chip has always been key to the revolution of technological applications. However, achieving the same feat in the world of optics has been proven difficult as light waves cannot be compressed to sizes below their wavelength by conventional semiconductor-based optical waveguides.

Metallic structures, in theory, are able to provide such functionality through so-called plasmonic effects. In practice, however, the large optical losses have hampered the implementation of such schemes. Combining the benefits of conventional optics with plasmonics, Shiyang Zhu and co-workers at the A*STAR Institute of Microelectronics have now demonstrated how structures made of semiconductor and metals represent a more viable approach to effectively miniaturize optical circuits.

Plasmonic effects are based on motions of electrons at the surface of metals that act like an antenna on incoming light. They can be very effective to squeeze light into small volumes, although transport losses when guiding light along such small volumes are much higher than for conventional semiconductor waveguides (linear structures for guiding electromagnetic waves).

Zhu and colleagues observed waveguides based on semiconductor silicon. First, ridges are etched out of silicon chip to form the basis for the waveguide architecture. The surface of the silicon is then oxidized to provide electrical insulation of the silicon before it is covered in a thin copper layer (see image).

This architecture has the benefit of very efficiently squeezing light into the waveguide via the surrounding copper layer, but travels mostly along the core made of silicon and not the metal. Silicon is transparent for light at telecommunications frequencies and thus shows low losses. ”These waveguide structures are not only compatible with the fabrication processes of silicon computer chips,” says Zhu. “More importantly, the use of silicon and silicon oxide and related semiconductors enables further possibilities to potentially achieve other effects, such as light amplification, and control over the plasmon properties.”

Having previously shown that such waveguides are able to guide light efficiently, the researchers have now demonstrated a number of complex photonic structures, including the splitting of light beams at multiple junctions, the propagation of light across multiple kinks and steps, resonator structures that show light interference effects and many more.

“This is only a first step towards the varied and complex effects possible with these structures,” says Zhu. “The next step is to demonstrate some of the active functionality, especially to combine waveguides with ultracompact plasmonic light modulators based on related designs for complete functional nanoplasmonic circuits.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of Microelectronics.

References:

Zhu, S., Lo, G. Q. & Kwong, D. L. Components for silicon plasmonic nanocircuits based on horizontal Cu-SiO2-Si-SiO2-Cu nanoplasmonic waveguides. Optics Express 20, 5867–5881 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht Engineers program tiny robots to move, think like insects
15.12.2017 | Cornell University

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>