Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Photonics: The smaller the better

05.07.2012
Waveguides that combine metallic and semiconductor structures can be made more compact
Increasing the areal density at which electronic components can be integrated onto a computer chip has always been key to the revolution of technological applications. However, achieving the same feat in the world of optics has been proven difficult as light waves cannot be compressed to sizes below their wavelength by conventional semiconductor-based optical waveguides.

Metallic structures, in theory, are able to provide such functionality through so-called plasmonic effects. In practice, however, the large optical losses have hampered the implementation of such schemes. Combining the benefits of conventional optics with plasmonics, Shiyang Zhu and co-workers at the A*STAR Institute of Microelectronics have now demonstrated how structures made of semiconductor and metals represent a more viable approach to effectively miniaturize optical circuits.

Plasmonic effects are based on motions of electrons at the surface of metals that act like an antenna on incoming light. They can be very effective to squeeze light into small volumes, although transport losses when guiding light along such small volumes are much higher than for conventional semiconductor waveguides (linear structures for guiding electromagnetic waves).

Zhu and colleagues observed waveguides based on semiconductor silicon. First, ridges are etched out of silicon chip to form the basis for the waveguide architecture. The surface of the silicon is then oxidized to provide electrical insulation of the silicon before it is covered in a thin copper layer (see image).

This architecture has the benefit of very efficiently squeezing light into the waveguide via the surrounding copper layer, but travels mostly along the core made of silicon and not the metal. Silicon is transparent for light at telecommunications frequencies and thus shows low losses. ”These waveguide structures are not only compatible with the fabrication processes of silicon computer chips,” says Zhu. “More importantly, the use of silicon and silicon oxide and related semiconductors enables further possibilities to potentially achieve other effects, such as light amplification, and control over the plasmon properties.”

Having previously shown that such waveguides are able to guide light efficiently, the researchers have now demonstrated a number of complex photonic structures, including the splitting of light beams at multiple junctions, the propagation of light across multiple kinks and steps, resonator structures that show light interference effects and many more.

“This is only a first step towards the varied and complex effects possible with these structures,” says Zhu. “The next step is to demonstrate some of the active functionality, especially to combine waveguides with ultracompact plasmonic light modulators based on related designs for complete functional nanoplasmonic circuits.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of Microelectronics.

References:

Zhu, S., Lo, G. Q. & Kwong, D. L. Components for silicon plasmonic nanocircuits based on horizontal Cu-SiO2-Si-SiO2-Cu nanoplasmonic waveguides. Optics Express 20, 5867–5881 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>