Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Nanospears’ Could Lead to Better Solar Cells, Lasers, Lighting

13.08.2009
Growing – and precisely aligning – microscopic, spear-shaped zinc oxide crystals on a surface of single-crystal silicon, researchers at Missouri University of Science and Technology may have developed a method to make more efficient solar cells.

Dr. Jay A. Switzer and his colleagues at Missouri S&T report in the journal Chemistry of Materials that their simple, inexpensive process could also lead to new materials for ultraviolet lasers, solid-state lighting and piezoelectric devices.

“It’s kind of like growing rock candy crystals on a string,” says Switzer, the Donald L. Castleman/Foundation for Chemical Research Professor of Discovery at Missouri S&T. But instead of using sugar water and string, Switzer’s team grows the zinc oxide “nanospears” on the single-crystal silicon placed in a beaker filled with an alkaline solution saturated with zinc ions. The process yields tilted, single-crystal, spear-shaped rods that grow out of the silicon surface, like tiny spikes.

The spears are about 100-200 nanometers in diameter – hundreds of times smaller than the width of a human hair – and about 1 micrometer in length. A nanometer – visible only with the aid of a high-power electron microscope – is one billionth of a meter, and some nanomaterials are only a few atoms in size.

The research is reported today (Tuesday, Aug. 11) in the journal’s online ASAP (“as soon as publishable”) section and will appear in an upcoming issue. The complete article, titled “Tilted Epitaxial ZnO Nanospears on Si(001) by Chemical Bath Deposition,” is available on the ASAP website at http://pubs.acs.org/doi/abs/10.1021/cm9010019.

Zinc oxide is a semiconductor that possesses some unusual physical properties, Switzer says. The material both absorbs and emits light, so it could be used in solar cells to absorb sunshine as well as in lasers or solid-state lighting as an emitter of light.

Silicon is also a semiconductor, but it absorbs light at a different part of the spectrum than zinc oxide. By growing zinc oxide on top of the silicon, “you’re putting two semiconductors on top of each other,” thereby widening the spectrum from which a solar cell could draw light, Switzer says.

“You can absorb more light and possibly get more power out” with a zinc oxide-silicon solar cell, he says.

Previous efforts to grow zinc oxide on silicon have been limited to expensive ultra-high-vacuum methods, and because of silicon’s high reactivity, it’s been impossible to deposit the zinc oxide directly, without the use of a third material as a buffer. In addition, previous attempts to align the two materials epitaxially – or perfectly one on top of the other – have been unsuccessful until now. By tilting the nanospears 51 degrees, Switzer and his team have reduced the mismatch from 40 percent to just 0.2 percent, a near-perfect alignment.

Epitaxially aligning the zinc oxide and silicon is important to ensure higher efficiency, Switzer says.

Switzer’s research is supported through a four-year, $700,000 grant from the Department of Energy’s Office of Basic Energy Sciences, Materials Sciences and Engineering Division.

Switzer’s co-authors for the Chemistry of Materials paper are Guojun Mu and Rakesh V. Gudavarthy, both graduate students in the Chemistry Department at Missouri S&T, and Dr. Elizabeth A. Kulp, a postdoctoral associate at Missouri S&T.

Andrew Careaga | Newswise Science News
Further information:
http://www.mst.edu

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>