Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ITER Technology proves successful

11.09.2008
Fusion for Energy (F4E) with the support of the European Commission, Japan Atomic Energy Agency (JAEA) and ITER Organisation have successfully tested a prototype superconductor for the ITER Poloidal Field coils made of Niobium(Nb)-Titanium(Ti) reaching a stable operation at 52 kA in a magnetic field of 6.4 Tesla. Poloidal Field coils will be used to maintain the plasma equilibrium and shape inside the ITER Tokamak reactor.

“This is a breakthrough for the fusion community. We have successfully tested and demonstrated a key technology milestone which is integral to the success of ITER. Based on these achievements, Europe, Russia and China will proceed with the procurement of the ITER Poloidal Field conductor” said Fusion for Energy Director, Didier Gambier.

The test coil with an outer diameter of 1.5 m and weighing 6 tons was the product of an international collaboration between Russia, Europe and Japan.

Russia produced the 0.73-mm diameter Nb-Ti superconducting strands and bundled them into a cable consisting of 1,440 strands. Europe assembled the cable into a steel jacket to make the final conductor and was also responsible for winding the conductor, insulating the turns and bonding them together to form a coil.

Japan was in charge of testing the coil at the JAEA site in Naka because of its world class expertise with a team of experts from the ITER Organisation, Europe, Japan, Russia and the United States. The results gave scientists complete confidence that this conductor would fulfill the extremely demanding performance required for ITER.

ITER will be the world's largest experimental fusion facility to demonstrate the scientific and technological feasibility of fusion power. Fusion is the process which powers the sun and the stars. When light atomic nuclei fuse together to form heavier ones, a large amount of energy is released. Fusion research is aimed at developing a prototype fusion power plant that is safe, environmentally responsible and economically viable with abundant fuel resources.

Europe will contribute almost half of the costs of its construction, while the other six Members to this joint international venture (China, India, Japan, the Republic of Korea, Russia and the United States), will contribute equally to the rest. The site of the ITER project is at Cadarache, France.

Aris Apollonatos | alfa
Further information:
http://www.fusionforenergy.europa.eu/
http://www.iter.org/
http://fusionforenergy.europa.eu/Procurement_operational.htm

More articles from Power and Electrical Engineering:

nachricht Open, flexible assembly platform for optical systems
23.01.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>