Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved synchronicity: Preventive care for the power grid

04.03.2013
New guidelines could help improve power grid reliability and reduce electricity cost

President Obama in this year's State of the Union address talked about the future of energy and mentioned "self-healing power grids" -- a grid that is able to keep itself stable during normal conditions and also to self-recover in the event of a disturbance caused, for example, by severe weather.

But as the national power-grid network becomes larger and more complex achieving reliability across the network is increasingly difficult. Now Northwestern University scientists have identified conditions and properties that power companies can consider using to keep power generators in the desired synchronized state and help make a self-healing power grid a reality.

The Northwestern team's design for a better power grid could help reduce both the frequency of blackouts and the cost of electricity as well as offer an improved plan for handling the intermittent power sources of renewable energy, such as solar and wind power, which can destabilize the network.

"We will be looking at a completely different power grid in the future," said Adilson E. Motter, who led the research. "The use of renewable energy is growing. More people will be driving electric cars, and the power grid will be delivering this energy, not gas stations. We need a power grid that is more capable and more reliable. This requires a better understanding of the current power grid as well as new ways to stabilize it."

Motter is the Harold H. and Virginia Anderson Professor of Physics and Astronomy at Northwestern's Weinberg College of Arts and Sciences.

The crux of the challenge is that for the U.S. power grid to function the power generators in each of its three interconnections (Eastern, Western and Texas) must be synchronized, all operating at the frequency of 60 hertz. Out-of-synch power generators can lead to blackouts that affect millions of people and cost billions of dollars -- losses similar to those of the Northeast blackout of 2003.

Having a network that can synchronize spontaneously and recover from failures in real time -- in other words, a self-healing power grid -- could prevent such blackouts. To help achieve this, power companies could apply the Northwestern guidelines as they add power generators to the network or tweak existing generators.

A paper describing the researchers' mathematical model, titled "Spontaneous synchrony in power-grid networks," is published in the March 2013 issue of the journal Nature Physics.

When a problem develops in the power-grid network, control devices are used to return power generators to a synchronized state. Motter likens this to using medicine to treat someone who is ill. He and his colleagues are suggesting conditions to keep synchronicity in good shape so interventions are kept to a minimum.

"Our approach is preventive care -- preventing failures instead of mitigating them," said Motter, an author of the paper and an executive committee member of the Northwestern Institute on Complex Systems (NICO). "The guidelines we offer could be very useful as the power grid expands."

The researchers derived a condition under which the desired synchronous state of a power grid is stable. They then used this condition to identify tunable parameters of the power generators that result in spontaneous synchronization. This synchronization can be autonomous, not guided by control devices.

"The blackout at this year's Super Bowl was caused by a device that was installed specifically to prevent blackouts," said Takashi Nishikawa, an author of the paper and a research associate professor of physics and astronomy at Northwestern. "A large fraction of blackouts have human and equipment errors among the causes.

"Reduced dependence on conventional control devices can improve the reliability of the grid," he said. "Our analysis also suggests ways to design control strategies that potentially can improve the existing ones."

Power generators are very different from each other; some are large and others small. Motter and his colleagues identified a "body mass index" for power generators, which they suggest should be kept approximately the same (making, in essence, all generators look the same to the network) in order to strengthen spontaneous synchronicity in the system. If the body mass indices change, they should be changed in a coordinated way.

The researchers demonstrated their model using real power grids of hundreds of power generators, similar to the size of the Texas portion of the U.S. power grid.

In addition to Motter and Nishikawa, other authors of the paper are Seth A. Myers of Stanford University and Marian Anghel of Los Alamos National Laboratory.

The Nature Physics article is available at http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys2535.html

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Power and Electrical Engineering:

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

nachricht Tailor-Made Membranes for the Environment
30.11.2016 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>