Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved synchronicity: Preventive care for the power grid

04.03.2013
New guidelines could help improve power grid reliability and reduce electricity cost

President Obama in this year's State of the Union address talked about the future of energy and mentioned "self-healing power grids" -- a grid that is able to keep itself stable during normal conditions and also to self-recover in the event of a disturbance caused, for example, by severe weather.

But as the national power-grid network becomes larger and more complex achieving reliability across the network is increasingly difficult. Now Northwestern University scientists have identified conditions and properties that power companies can consider using to keep power generators in the desired synchronized state and help make a self-healing power grid a reality.

The Northwestern team's design for a better power grid could help reduce both the frequency of blackouts and the cost of electricity as well as offer an improved plan for handling the intermittent power sources of renewable energy, such as solar and wind power, which can destabilize the network.

"We will be looking at a completely different power grid in the future," said Adilson E. Motter, who led the research. "The use of renewable energy is growing. More people will be driving electric cars, and the power grid will be delivering this energy, not gas stations. We need a power grid that is more capable and more reliable. This requires a better understanding of the current power grid as well as new ways to stabilize it."

Motter is the Harold H. and Virginia Anderson Professor of Physics and Astronomy at Northwestern's Weinberg College of Arts and Sciences.

The crux of the challenge is that for the U.S. power grid to function the power generators in each of its three interconnections (Eastern, Western and Texas) must be synchronized, all operating at the frequency of 60 hertz. Out-of-synch power generators can lead to blackouts that affect millions of people and cost billions of dollars -- losses similar to those of the Northeast blackout of 2003.

Having a network that can synchronize spontaneously and recover from failures in real time -- in other words, a self-healing power grid -- could prevent such blackouts. To help achieve this, power companies could apply the Northwestern guidelines as they add power generators to the network or tweak existing generators.

A paper describing the researchers' mathematical model, titled "Spontaneous synchrony in power-grid networks," is published in the March 2013 issue of the journal Nature Physics.

When a problem develops in the power-grid network, control devices are used to return power generators to a synchronized state. Motter likens this to using medicine to treat someone who is ill. He and his colleagues are suggesting conditions to keep synchronicity in good shape so interventions are kept to a minimum.

"Our approach is preventive care -- preventing failures instead of mitigating them," said Motter, an author of the paper and an executive committee member of the Northwestern Institute on Complex Systems (NICO). "The guidelines we offer could be very useful as the power grid expands."

The researchers derived a condition under which the desired synchronous state of a power grid is stable. They then used this condition to identify tunable parameters of the power generators that result in spontaneous synchronization. This synchronization can be autonomous, not guided by control devices.

"The blackout at this year's Super Bowl was caused by a device that was installed specifically to prevent blackouts," said Takashi Nishikawa, an author of the paper and a research associate professor of physics and astronomy at Northwestern. "A large fraction of blackouts have human and equipment errors among the causes.

"Reduced dependence on conventional control devices can improve the reliability of the grid," he said. "Our analysis also suggests ways to design control strategies that potentially can improve the existing ones."

Power generators are very different from each other; some are large and others small. Motter and his colleagues identified a "body mass index" for power generators, which they suggest should be kept approximately the same (making, in essence, all generators look the same to the network) in order to strengthen spontaneous synchronicity in the system. If the body mass indices change, they should be changed in a coordinated way.

The researchers demonstrated their model using real power grids of hundreds of power generators, similar to the size of the Texas portion of the U.S. power grid.

In addition to Motter and Nishikawa, other authors of the paper are Seth A. Myers of Stanford University and Marian Anghel of Los Alamos National Laboratory.

The Nature Physics article is available at http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys2535.html

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>