Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flexible Solar Strips Light Up Campus Bus Shelter

16.06.2009
There won’t be anymore waiting in the dark at this campus bus shelter. New flexible solar cell technology developed by a group of engineering researchers at McMaster University has been installed to power lighting for night-time transit users.

The researchers are also hoping that the prototype will help boost efforts to commercialize the new technology. The bus shelter is located on the west side of University Avenue between the John Hodgins Engineering Building and the Life Sciences Building.

“Our goal is to provide a clean, affordable power source for bus shelters that will let transit companies run Internet-based scheduling updates,” said Adrian Kitai, a professor of engineering physics at McMaster who guided the project. “The solar technology can also be used to light up bus shelter signage and provide lighting for general safety.”

The flexible solar cell project started as a master’s thesis for Wei Zhang, who subsequently worked as an engineer in the Department of Engineering Physics. Julia Zhu, a research technician in the department, and Jesika Briones, a master’s of engineering entrepreneurship and innovation graduate, also helped develop the initiative.

The ability to bend the solar cells to fit the curved roof of the bus shelter is one of the main features of the technology. The flexibility is achieved by tiling a large number of small silicon elements into an array, mounting them onto a flexible sheet, and connecting them through a proprietary method. The two solar strips installed on the McMaster bus shelter are about 90 centimeters long and 12 centimeters wide. Each strip has 720 one-centimetre square solar cells and generates up to 4.5 Watts of power.

With the help of Facility Services at McMaster, a solar strip was mounted at each end of the bus shelter roof and connected to two energy-efficient, multi-LED, light fixtures. Each light fixture uses only 600 milliwatts of power and produces about the same light output as a three watt regular tungsten bulb or what a small night light would use. The lights are bright enough for easy reading.

Gene Nakonechny | EurekAlert!
Further information:
http://www.mcmaster.ca

More articles from Power and Electrical Engineering:

nachricht System draws power from daily temperature swings
16.02.2018 | Massachusetts Institute of Technology

nachricht Researchers at Kiel University develop extremely sensitive sensor system for magnetic fields
15.02.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>