Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Eco-Computer with a natural wood look

Surfing for hours on the Internet consumes a lot of electricity and is harmful to the environment. However, a new ecological PC saves energy as it operates: It produces about 70 percent less CO2 than conventional computers. As the first computer of its class, it obtained the “EU Ecolabel,” the environmental label of the European Union.

A work tool, a leisure activity resource, a personal assistant - computers are ubiquitous. Yet the environmental performance for today‘s computers leaves a lot to be desired: they rapidly become obsolete, typically contain toxic substances as flame retardants and have individual components that are difficult to recycle. Moreover, they consume plenty of power whose production, in turn, causes the release of CO2 into the atmosphere.

The environmentally-sound touch-screen PC, iameco, is definitely out of the ordinary – indeed, it is made out of wood.
© MicroPro

Employees at the MicroPro Company in Ireland, working in collaboration with colleagues at the Fraunhofer Institute for Reliability and Microintegration IZM in Berlin, have engineered a wooden-frame computer with reduced environmental impacts. As the first computer of its class, the “iameco” (pronounced “I - am - eco”) was awarded for the “EU Ecolabel,” the European Union’s environmental label.

“This touch-screen PC has a very low energy consumption over the entire lifecycle of the unit – starting from production, through the use phase to its ultimate recycling,” explains Alexander Schlösser, scientist at IZM. The carbon footprint is less than 360 kilograms CO2eq over the full product life cycle, which is 70 percent less than a typical desktop PC with monitor.

In addition, it can be easily recycled. Of the materials used, 98 percent can be recycled. Indeed, 20 percent of the computer can be recycled immediately – in other words, many parts and components can be reused for repairing other computers – such as parts of the wooden frame.

Heatsinks replace fans

But how is it possible to design such an environmentally-friendly PC? One example: to ensure that the processor does not overheat, a fan typically provides cooling to the PC. This kind of ventilation not only consumes energy, it also comes with an annoyingly incessant buzz. So, the fans were replaced with heatsinks, which convey the heat from the processor via copper tubes, called heat pipes. This fan-free design saves energy, and the computer is barely audible. The scientists also got creative with the display lighting. Instead of conventional lighting, LEDs illuminate the screen and improve its energy efficiency by 30 to 40 percent. The manufacturers reduced the hazardous materials to a minimum, and for the most part substituted halogenated flame retardants with chemicals that are less harmful to the environment. Over the long term, these halogenated flame retardants should disappear from all computers.

Since the eco-PC was designed with standard components, users can retrofit it anytime – for example, if more internal memory is needed. And if the computer were to crash , the users would benefit from the improved dissasembly and modular design of the device. This enables the capability for easier repair and maintenance. Only those components will be replaced that are so severely damaged that they can no longer be repaired. The better maintenance option ensures a longer product life, and the easily conducted repairs ensure a high degree of environmentally sound engineering. In the next stage, the manufacturer intends to expand the modularity of the computer so that after a few years, users can equip older computers with a new internal life. The “old” computer would then return to the latest state of the art – and would cost only half as much as a completely new PC. The employees at MicroPro and IZM want to continue collaborating in the future as well. At this time, they are jointly developing an environmentally-friendly wooden frame notebook.

Alexander Schlösser | Fraunhofer Research News
Further information:

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>