Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cutting the cord on soft robots

12.09.2014

From Harvard engineers, a machine that can walk through flames

When it comes to soft robots, researchers have finally managed to cut the cord.


Michael Tolley shows off the soft-robot design.

(Animation by Joe Sherman)

Developers from Harvard’s School for Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering have produced the first untethered soft robot — a quadruped that can stand up and walk away from its designers.

Working in the lab of Robert Wood, the Charles River Professor of Engineering and Applied Sciences, a team of researchers that included Kevin Galloway, Michael Karpelson, Bobak Mosadegh, Robert Shepherd, Michael Tolley, and Michael Wehner was able to scale up earlier soft-robot designs, enabling a single robot to carry on its back all the equipment it needs to operate — micro-compressors, control systems, and batteries. The design is described in a paper in Soft Robotics that appeared online Sept. 1.

... more about:
»Cutting »River »Robotics »Sciences »Working »rubber »scale »weight

“Earlier versions of soft robots were all tethered, which works fine in some applications, but what we wanted to do was challenge people’s concept of what a robot has to look like,” said Tolley, a research associate in materials science and mechanical engineering at the Wyss Institute and the study’s first author. “We think the reason people have settled on using metal and rigid materials for robots is because they’re easier to model and control. This work is very inspired by nature, and we wanted to demonstrate that soft materials can also be the basis for robots.”

Compared with earlier soft robots, which were typically no larger than a steno pad, the system designed by Tolley and colleagues is huge, measuring more than a half-meter in length and capable of carrying as much as 7½ pounds on its back.

The design process, however, was about more than scaling up the smaller robots.

“As soon as you start thinking about putting the basic components you need to make this work — micro-compressors, controllers, and batteries — on an untethered robot, you need a design that can carry those parts,” Tolley said. “You need to think about something that can handle much higher pressures, so there are materials challenges and there are design challenges and there are control challenges.”

Giving the untethered robot the strength needed to carry mechanical components meant air pressures as high as 16 pounds per square inch, more than double the seven psi used by many earlier robot designs. To deal with the increased pressure, the robot had to be made of tougher stuff.

The material Tolley and colleagues settled on was a “composite” silicone rubber made from stiff rubber impregnated with hollow glass microspheres to reduce the robot’s weight. The robot’s bottom was made from Kevlar fabric to ensure it was tough and lightweight.

The result, Tolley said, was a robot that can stand up to a host of extreme conditions.

Researchers tested the robot in snow, submerged it in water, walked it through flames, and even ran it over with a car. After each experiment, it emerged unscathed.

Though additional hurdles remain — such as increasing the speed of the robots and outfitting them with sensors — the development of an untethered soft robot is a major advance, Tolley said, one that has the potential to radically transform not only what robots look like, but also how they might be used.

“One of the things that limit our imagination is that factory robots are very large and scary and dangerous to be around,” he said. “As a lay person, you can’t just walk into a factory where industrial robots are working. But a soft system is inherently less dangerous, so you can start to interact with it more, and I think that opens up many more opportunities.”

Peter Reuell | Eurek Alert!
Further information:
http://news.harvard.edu/gazette/story/2014/09/cutting-the-cord-on-soft-robots/

Further reports about: Cutting River Robotics Sciences Working rubber scale weight

More articles from Power and Electrical Engineering:

nachricht Heavy metals in water meet their match
28.07.2017 | Swansea University

nachricht Did you know that infrared heat and UV light contribute to the success of your barbecue?
27.07.2017 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>