Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Conquering deep-water sites - start of EU project enlarges offshore potential for wind energy

01.12.2010
With a kick-off meeting in Bremerhaven 19 partners from 8 European countries under the direction of the Fraunhofer IWES entered the conception phase for the largest publicly funded research project on development of enabling technology elements for deep-water offshore wind. Contributing 11 million euro to the 20 million euro budget 5-year project, the European Commission underlines the tremendous economic potential of offshore wind energy.

Since pioneering activities in this field were so far privately financed, the existing knowledge is fragmented. In the HiPRwind project, cutting edge research centers and top-notch European industrial players collaborate openly.

“For the first time, the HiPRWind project provides comprehensive measurement data on wind turbines with floating structures. Therefore, project partners from companies and research institutes will jointly identify opportunities for cost cuttings to enhance offshore wind energy at deep water sites”, underlines Prof. Dr. Andreas Reuter, Director of project coordinator Fraunhofer IWES.

HiPRwind (read “hyperwind") is an EU project introducing a new cross-sectoral approach to the development of very large offshore wind turbines. Focused on floating systems, this 5-year pan-European R&D effort will develop and test new solutions for enabling offshore wind technologies at an industrial scale. The project is designed with an “open architecture, shared access” approach in that

the consortium of 19 partners will work together, in a collaborative way, to develop enabling structural and component technology solutions for very large wind power installations in medium to deep waters. Results of general interest will be shared within the broader R&D community working on future wind energy solutions.

A central outcome of HiPRwind is to deliver a fully functional floating wind turbine installation at approximately 1:10th scale of future commercial systems, deployed at real sea conditions. This research & testing facility, a world’s first, will be used to research new solutions and generate field data. The project will address critical issues of offshore wind technology such as the need for extreme reliability, remote maintenance and grid integration with particular emphasis on floating wind turbines, where economic and technical weight and size limitations of wind turbines and support structures can be overcome.

Innovative engineering methods will be applied to selected key development challenges such as rotor blade designs, structural health monitoring systems, reliable power electronics and control systems. Built-in active control features will reduce the dynamic loads on the floater in order to save weight and cost compared to existing designs. HiPRWind will develop and test novel, cost effective approaches to floating offshore wind turbines at a lower 1-MW scale.

In this way, the project will overcome the gap in technology development between small scale tank testing and full scale offshore deployment. Thereby, HiPRwind will significantly reduce the risks and costs of commercialising deep water wind technology. The HiPRwind project will make use of existing test locations which offer a favourable permitting situation and infrastructure such as grid connection and monitoring facilities already in place.

In Work Package (WP) 1, the floating support structure and its moorings system will be designed, whereas WP2 is focused on the construction of the full demonstrator unit, its assembly at port facilities and installation at the offshore test site. WP 3 covers the coordination and operation of the platform related research. Within WP 4 to 7, critical aspects of the floating wind turbine are investigated, such as the structure and its system dynamics, the controller, condition and structural health monitoring systems, and the rotor based on innovative blade designs and features. High reliability power electronics will be designed, assembled and tested in the lab at a multi-MW scale. The R&D results all feed into WP8 which is dedicated to identifying and refining new concepts for very large offshore wind turbines. The project also has dedicated WPs for dissemination and IPR exploitation, addressing also non-specialist and non-technical target groups, as well as project management drawing on both research and industry consortium members.

The full impact of the HiPRwind project will be ensured by the strong and close collaboration of participating best-in-class industrial and R&D players in the maritime and wind energy sector with a strong background on successful industrial development in harsh environments.This joint cross-sectoral approach aims to stimulate market development in floating wind technology. Improving the cost efficiency of offshore wind energy will facilitate exploitation of untapped deep-water wind resources. An ambitious dissemination approach will promote broad awareness and up-take of project results in successive R&D pro- jects.

List of project partners

FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER
ANGEWANDTEN FORSCHUNG E.V / Germany
INGENIERIA Y DISEÑO EUROPEO S.A. / Spain
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET /
Norway
ACCIONA ENERGIA S.A. / Spain
SINTEF ENERGI AS / Norway
TECHNIP FRANCE SAS / France
NATIONAL RENEWABLE ENERGY CENTRE LIMITED / United
Kingdom
ABB SCHWEIZ AG / Switzerland
FUNDACION ROBOTIKER Tecnalia / Spain
WOLFEL BERATENDE INGENIEURE GMBH &CO KG / Germany
Mammoet Europe BV / Netherlands
DR TECHN OLAV OLSEN AS / Norway
BUREAU VERITAS-REGISTRE INTERNATIONAL DE CLASSIFICATION
DE NAVIRES ET D’AERONEFS / France
MICROMEGA DYNAMICS SA / Belgium
UNIVERSITAET SIEGEN / Germany
TWI LIMITED / United Kingdom
1-TECH / Belgium
ACCIONA WINDPOWER / Spain
VICINAY CADENAS SOCIEDAD ANONIMA VICINAY / Spain
Weitere Informationen:
http://www.hiprwind.eu Coming soon
http://www.hyperwind.eu Coming soon
http://www.iwes.fraunhofer.de Project coordinator

Britta Rollert | Fraunhofer-Institut
Further information:
http://www.iwes.fraunhofer.de

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>