Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Compressor-free refrigerator may loom in the future

11.08.2008
Refrigerators and other cooling devices may one day lose their compressors and coils of piping and become solid state, according to Penn State researchers who are investigating electrically induced heat effects of some ferroelectric polymers.

"This is the first step in the development of an electric field refrigeration unit," says Qiming Zhang, distinguished professor of electrical engineering. "For the future, we can envision a flat panel refrigerator. No more coils, no more compressors, just solid polymer with appropriate heat exchangers."

Other researchers have explored magnetic field refrigeration, but electricity is more convenient.

Zhang, working with Bret Neese, graduate student, materials science and engineering; postdoctoral fellows Baojin Chu and Sheng-Guo Lu; Yong Wang, graduate student, and Eugene Furman, research associate, looked at ferroelectric polymers that exhibit temperature changes at room temperature under an electrical field. These polarpolymers include poly(vinylidene fluoride-trifluoroethylene) and poly(vinylidene fluoride-trifluoroethylene)-chlorofluoroethylene, however there are other polarpolymers that exhibit the same effect.

Conventional cooling systems, -- refrigerators or air conditioners -- rely on the properties of gases to cool and most systems use the change in density of gases at changing pressures to cool. The coolants commonly used are either harmful to people or the environment. Freon, one of the fluorochlorocarbons banned because of the damage it did to the ozone layer, was the most commonly used refrigerant. Now, a variety of coolants is available. Nevertheless, all have problems and require energy-eating compressors and lots of heating coils.

Zhang's approach uses the change form disorganized to organized that occurs in some polarpolymers when placed in an electric field. The natural state of these materials is disorganized with the various molecules randomly positioned. When electricity is applied, the molecules become highly ordered and the material gives off heat and becomes colder. When the electricity is turned off, the material reverts to its disordered state and absorbs heat.

The researchers report a change in temperature for the material of about 22.6 degrees Fahrenheit, in today's (Aug. 8) issue of Science. Repeated randomizing and ordering of the material combined with an appropriate heat exchanger could provide a wide range of heating and cooling temperatures.

"These polymers are flexible and can be used for heating and cooling, so there may be many different possible applications," said Zhang, also a faculty member of Penn State's Materials Research Institute.

Besides air conditioning and refrigeration units, applications could include heating or cooling of a variety of clothing including cooling of protective gear for fire fighters, heating of mittens and socks or shoes for athletes, sportsmen and law enforcement officer and even cooling of mascot and cartoon character costumes. Another application would be in electronics, where small amounts of the polymers could effectively cool over heating circuit boards and allow closer packing, and therefore smaller devices.

Andrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Power and Electrical Engineering:

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Solar-to-fuel system recycles CO2 to make ethanol and ethylene
19.09.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>