Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Compressor-free refrigerator may loom in the future

11.08.2008
Refrigerators and other cooling devices may one day lose their compressors and coils of piping and become solid state, according to Penn State researchers who are investigating electrically induced heat effects of some ferroelectric polymers.

"This is the first step in the development of an electric field refrigeration unit," says Qiming Zhang, distinguished professor of electrical engineering. "For the future, we can envision a flat panel refrigerator. No more coils, no more compressors, just solid polymer with appropriate heat exchangers."

Other researchers have explored magnetic field refrigeration, but electricity is more convenient.

Zhang, working with Bret Neese, graduate student, materials science and engineering; postdoctoral fellows Baojin Chu and Sheng-Guo Lu; Yong Wang, graduate student, and Eugene Furman, research associate, looked at ferroelectric polymers that exhibit temperature changes at room temperature under an electrical field. These polarpolymers include poly(vinylidene fluoride-trifluoroethylene) and poly(vinylidene fluoride-trifluoroethylene)-chlorofluoroethylene, however there are other polarpolymers that exhibit the same effect.

Conventional cooling systems, -- refrigerators or air conditioners -- rely on the properties of gases to cool and most systems use the change in density of gases at changing pressures to cool. The coolants commonly used are either harmful to people or the environment. Freon, one of the fluorochlorocarbons banned because of the damage it did to the ozone layer, was the most commonly used refrigerant. Now, a variety of coolants is available. Nevertheless, all have problems and require energy-eating compressors and lots of heating coils.

Zhang's approach uses the change form disorganized to organized that occurs in some polarpolymers when placed in an electric field. The natural state of these materials is disorganized with the various molecules randomly positioned. When electricity is applied, the molecules become highly ordered and the material gives off heat and becomes colder. When the electricity is turned off, the material reverts to its disordered state and absorbs heat.

The researchers report a change in temperature for the material of about 22.6 degrees Fahrenheit, in today's (Aug. 8) issue of Science. Repeated randomizing and ordering of the material combined with an appropriate heat exchanger could provide a wide range of heating and cooling temperatures.

"These polymers are flexible and can be used for heating and cooling, so there may be many different possible applications," said Zhang, also a faculty member of Penn State's Materials Research Institute.

Besides air conditioning and refrigeration units, applications could include heating or cooling of a variety of clothing including cooling of protective gear for fire fighters, heating of mittens and socks or shoes for athletes, sportsmen and law enforcement officer and even cooling of mascot and cartoon character costumes. Another application would be in electronics, where small amounts of the polymers could effectively cool over heating circuit boards and allow closer packing, and therefore smaller devices.

Andrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Power and Electrical Engineering:

nachricht The world's most powerful acoustic tractor beam could pave the way for levitating humans
22.01.2018 | University of Bristol

nachricht Siberian scientists learned how to reduce harmful emissions from HPPs
22.01.2018 | Siberian Federal University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>