Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Compressor-free refrigerator may loom in the future

11.08.2008
Refrigerators and other cooling devices may one day lose their compressors and coils of piping and become solid state, according to Penn State researchers who are investigating electrically induced heat effects of some ferroelectric polymers.

"This is the first step in the development of an electric field refrigeration unit," says Qiming Zhang, distinguished professor of electrical engineering. "For the future, we can envision a flat panel refrigerator. No more coils, no more compressors, just solid polymer with appropriate heat exchangers."

Other researchers have explored magnetic field refrigeration, but electricity is more convenient.

Zhang, working with Bret Neese, graduate student, materials science and engineering; postdoctoral fellows Baojin Chu and Sheng-Guo Lu; Yong Wang, graduate student, and Eugene Furman, research associate, looked at ferroelectric polymers that exhibit temperature changes at room temperature under an electrical field. These polarpolymers include poly(vinylidene fluoride-trifluoroethylene) and poly(vinylidene fluoride-trifluoroethylene)-chlorofluoroethylene, however there are other polarpolymers that exhibit the same effect.

Conventional cooling systems, -- refrigerators or air conditioners -- rely on the properties of gases to cool and most systems use the change in density of gases at changing pressures to cool. The coolants commonly used are either harmful to people or the environment. Freon, one of the fluorochlorocarbons banned because of the damage it did to the ozone layer, was the most commonly used refrigerant. Now, a variety of coolants is available. Nevertheless, all have problems and require energy-eating compressors and lots of heating coils.

Zhang's approach uses the change form disorganized to organized that occurs in some polarpolymers when placed in an electric field. The natural state of these materials is disorganized with the various molecules randomly positioned. When electricity is applied, the molecules become highly ordered and the material gives off heat and becomes colder. When the electricity is turned off, the material reverts to its disordered state and absorbs heat.

The researchers report a change in temperature for the material of about 22.6 degrees Fahrenheit, in today's (Aug. 8) issue of Science. Repeated randomizing and ordering of the material combined with an appropriate heat exchanger could provide a wide range of heating and cooling temperatures.

"These polymers are flexible and can be used for heating and cooling, so there may be many different possible applications," said Zhang, also a faculty member of Penn State's Materials Research Institute.

Besides air conditioning and refrigeration units, applications could include heating or cooling of a variety of clothing including cooling of protective gear for fire fighters, heating of mittens and socks or shoes for athletes, sportsmen and law enforcement officer and even cooling of mascot and cartoon character costumes. Another application would be in electronics, where small amounts of the polymers could effectively cool over heating circuit boards and allow closer packing, and therefore smaller devices.

Andrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>