Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Affordable solar?

13.12.2011
It’s time to stop thinking of solar energy as a boutique source of power, says Joshua Pearce.

Sure, solar only generates about 1 percent of the electricity in the US. But that will change in a few years, says Pearce, an associate professor of electrical engineering and materials science at Michigan Technological University. The ultimate in renewable energy is about to go mainstream.

It’s a matter of economics. A definitive new analysis by Pearce and his colleagues at Queens University in Kingston, Ontario, shows that solar photovoltaic systems are very close to achieving the tipping point in many regions: they can make electricity that’s as cheap— sometimes cheaper—than what consumers pay their utilities.

Here’s why. First, the price of solar panels has plummeted. “Since 2009, the cost has dropped 70 percent,” says Pearce. But more than that, the assumptions used in previous studies have not given solar an even break.

“Historically, when comparing the economics of solar and conventional energy, people have been very conservative,” says Pearce.

To figure out the true cost of photovoltaic energy, analysts need to consider several variables, including the cost to install and maintain the system, finance charges, how long it lasts, and how much electricity it generates. Pearce and his colleagues performed an exhaustive review of the previous studies and concluded that the values given those variables were out of whack.

“It is still a common misconception that solar PV technology has a short life and is therefore extremely expensive,” he said. However, PV panels are solid-state electronic devices with no moving parts and should last a long time. “Based on the latest long-term studies, we should be doing our economic analysis on a 30-year lifetime at minimum,” Pearce said.

In addition, most analyses assume that the productivity of solar panels will drop at an annual rate of 1 percent or more, a huge overestimation, according to Pearce. “If you buy a top-of-the-line solar panel, it’s much less, between 0.1 and 0.2 percent.”

Finally, “The price of the solar equipment has been dropping, so you’d think that the older papers would have higher cost estimates,” Pearce said. “That’s not necessarily the case.” Equipment costs are determined based on dollars per watt of electricity produced. Very recent studies set the amount between $2 and $10. The true cost in 2011, says Pearce, is under $1 per watt for solar panels on the global market, though system and installation costs vary widely. In some parts of the world, solar is already economically superior, and the study concludes that solar will become an increasingly economical source of electricity over expanding geographical regions.

In regions with a burgeoning solar industry, thanks to government programs that pay a premium for renewable energy, there are lots of solar panel installers, which heats up the market. “Elsewhere, installation costs have been high because contractors will do just one job a month,” says Pearce. “Increasing demand and competition would drop installation costs considerably.”

Furthermore, economic studies like Pearce’s don’t generally taken into account solar energy’s intangible benefits, reduced pollution and carbon emissions. And while silicon-based solar panels do rely on a nonrenewable resource—sand—they are no threat to the world’s beaches. It only takes about a sandwich baggie of sand to make a roof’s worth of thin-film photovoltaic cells, Pearce said.

Based on the study, and on the fact that the cost of conventional power continues to creep upward, Pearce believes that solar energy will soon be a major player in the energy game. “It’s just a matter of time before market economics catches up with it,” he says.

The study can be found at: K. Branker, M. J.M. Pathak, J. M. Pearce, “A Review of Solar Photovoltaic Levelized Cost of Electricity”, Renewable & Sustainable Energy Reviews 15, 4470-4482 (2011). http://dx.doi.org/10.1016/j.rser.2011.07.104.

Michigan Technological University (www.mtu.edu) is a leading public research university developing new technologies and preparing students to create the future for a prosperous and sustainable world. Michigan Tech offers more than 130 undergraduate and graduate degree programs in engineering; forest resources; computing; technology; business; economics; natural, physical and environmental sciences; arts; humanities; and social sciences.

Joshua Pearce | EurekAlert!
Further information:
http://www.mtu.edu

More articles from Power and Electrical Engineering:

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

nachricht Positrons as a new tool for lithium ion battery research: Holes in the electrode
22.02.2017 | Technische Universität München

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>