Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Young chum salmon may get biggest nutrition boost from Elliott Bay restored beaches

16.09.2015

In the midst of ferry boats, container ships and tourists crowding Seattle's Elliott Bay, young salmon are just trying to get a decent meal.

The fish hatch in the rivers and streams that feed into Puget Sound and almost immediately rely on eating small organisms near the shore, including in the heart of Seattle's commerce-filled waterfront.


University of Washington researchers sample for young salmon and invertebrates along a restored beach at Seacrest Park in Seattle's Elliott Bay.

Credit: University of Washington

Though salmon share the busy Elliott Bay waters with boats and barges, scientists suspect built-up, "armored" shorelines and large piers may be the main culprits disrupting fish habitat. These artificial structures block light and confuse the fish as they make their way to the ocean.

But are concrete seawalls actually affecting what the salmon eat, and by how much? A University of Washington study shows that it depends on the species, with small chum salmon seeming to be most affected.

The study looked at the diets of young salmon passing through Elliott Bay. Researchers measured the types of prey in the water along armored shorelines and along restored beaches. Scientists then collected young salmon in nets -- corralled by boats or divers -- and flushed out their stomachs to look at what they ate recently.

The stomach contents showed that young pink and Chinook salmon that feed on organisms either floating in the water or on the water's surface were able to eat the same amount of food, whether they were feeding near a concrete shoreline such as Seattle's ferry terminal at Coleman Dock or along shoreline that has been restored to look like a natural beach, including along Seattle Art Museum's Olympic Sculpture Park.

However, young chum salmon that munch on critters found mainly in bottom habitats had a noticeable change in their eating patterns depending on the type of shoreline. These small chum salmon ate more invertebrates floating in the water when swimming by armored sites, and more bottom-dwelling crustaceans -- which they prefer -- when feeding near beaches. Larger juvenile chum behaved more like their pink and Chinook counterparts.

"Our study shows that armoring affects what species of prey are available," said lead author Stuart Munsch, a UW doctoral student in aquatic and fishery sciences. "Fish that normally eat those missing prey will feed on alternative species at armored sites, but we don't know what the costs of that change are to the fish."

The findings were published Sept. 15 in the journal Marine Ecology Progress Series.

The article details the latest in a series of recent studies along Seattle's waterfront that is trying to better understand how fish behave in urban, industrial waterways. The shores of Elliott Bay are almost fully walled-in with concrete and riprap, a layer of large stones designed to keep soil from eroding. The most natural shorelines are along several manmade sandy beaches, restored recently for public recreation and natural beauty.

The study confirmed that areas converted to look like beaches attract more diverse organisms, including small crustaceans known as harpacticoid copepods. These weren't seen much along armored shorelines, which instead had more barnacles -- not an appetizing choice for young salmon.

"Engineered shorelines like these manmade beaches are going to have more components of a natural ecosystem than a featureless wall," said co-author Jeff Cordell, lead investigator on the project and a UW research scientist with aquatic and fishery sciences. "Manmade beaches will produce more diversity and numbers of the kinds of food juvenile salmon utilize."

The researchers found that while the types of organisms in the water did indeed change depending on shoreline, only the small chum salmon actually adjusted what they ate.

Maybe the other fish, the pink, Chinook and larger chum salmon, ate prey that wasn't directly affected by the type of shorelines present -- such as plankton, which was in the water at both locations -- or were large and strong enough to swim through both areas, eating along the way, before their stomach contents were measured.

But small chum salmon are especially dependent on the tiny crustaceans more common along restored beach sites. And while none of the fish studied were starving, the fish whose diets changed may have used up considerable energy trying to keep a balanced diet.

"The [type of] copepods that chum salmon usually feed on are brightly colored and they're found near the bottom," Munsch said. In other words, the chum's typical diet is easy prey. "We think that chum salmon along armored shorelines might have to spend more energy searching for prey that are harder to see, or chasing prey that are more evasive, when that energy should be allocated to growth or migration."

This study and other recent papers by Cordell's research team are informing Seattle's Seawall Project, which is replacing the current waterfront wall with a structure that intends to be friendlier to fish while protecting city infrastructure.

###

The research was funded by the Seattle Department of Transportation and a National Science Foundation Graduate Research Fellowship. Jason Toft, a research scientist in UW fisheries, is another co-author on this paper.

For more information, contact Cordell at jcordell@uw.edu or 206-543-7532 and Munsch at smunsch@uw.edu.

Media Contact

Michelle Ma
mcma@uw.edu
206-543-2580

 @UW

http://www.washington.edu/news/ 

Michelle Ma | EurekAlert!

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Single-photon detector can count to 4

18.12.2017 | Information Technology

Quantum memory with record-breaking capacity based on laser-cooled atoms

18.12.2017 | Physics and Astronomy

How much soil goes down the drain -- New data on soil lost due to water

18.12.2017 | Agricultural and Forestry Science

VideoLinks
B2B-VideoLinks
More VideoLinks >>>