Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Young chum salmon may get biggest nutrition boost from Elliott Bay restored beaches

16.09.2015

In the midst of ferry boats, container ships and tourists crowding Seattle's Elliott Bay, young salmon are just trying to get a decent meal.

The fish hatch in the rivers and streams that feed into Puget Sound and almost immediately rely on eating small organisms near the shore, including in the heart of Seattle's commerce-filled waterfront.


University of Washington researchers sample for young salmon and invertebrates along a restored beach at Seacrest Park in Seattle's Elliott Bay.

Credit: University of Washington

Though salmon share the busy Elliott Bay waters with boats and barges, scientists suspect built-up, "armored" shorelines and large piers may be the main culprits disrupting fish habitat. These artificial structures block light and confuse the fish as they make their way to the ocean.

But are concrete seawalls actually affecting what the salmon eat, and by how much? A University of Washington study shows that it depends on the species, with small chum salmon seeming to be most affected.

The study looked at the diets of young salmon passing through Elliott Bay. Researchers measured the types of prey in the water along armored shorelines and along restored beaches. Scientists then collected young salmon in nets -- corralled by boats or divers -- and flushed out their stomachs to look at what they ate recently.

The stomach contents showed that young pink and Chinook salmon that feed on organisms either floating in the water or on the water's surface were able to eat the same amount of food, whether they were feeding near a concrete shoreline such as Seattle's ferry terminal at Coleman Dock or along shoreline that has been restored to look like a natural beach, including along Seattle Art Museum's Olympic Sculpture Park.

However, young chum salmon that munch on critters found mainly in bottom habitats had a noticeable change in their eating patterns depending on the type of shoreline. These small chum salmon ate more invertebrates floating in the water when swimming by armored sites, and more bottom-dwelling crustaceans -- which they prefer -- when feeding near beaches. Larger juvenile chum behaved more like their pink and Chinook counterparts.

"Our study shows that armoring affects what species of prey are available," said lead author Stuart Munsch, a UW doctoral student in aquatic and fishery sciences. "Fish that normally eat those missing prey will feed on alternative species at armored sites, but we don't know what the costs of that change are to the fish."

The findings were published Sept. 15 in the journal Marine Ecology Progress Series.

The article details the latest in a series of recent studies along Seattle's waterfront that is trying to better understand how fish behave in urban, industrial waterways. The shores of Elliott Bay are almost fully walled-in with concrete and riprap, a layer of large stones designed to keep soil from eroding. The most natural shorelines are along several manmade sandy beaches, restored recently for public recreation and natural beauty.

The study confirmed that areas converted to look like beaches attract more diverse organisms, including small crustaceans known as harpacticoid copepods. These weren't seen much along armored shorelines, which instead had more barnacles -- not an appetizing choice for young salmon.

"Engineered shorelines like these manmade beaches are going to have more components of a natural ecosystem than a featureless wall," said co-author Jeff Cordell, lead investigator on the project and a UW research scientist with aquatic and fishery sciences. "Manmade beaches will produce more diversity and numbers of the kinds of food juvenile salmon utilize."

The researchers found that while the types of organisms in the water did indeed change depending on shoreline, only the small chum salmon actually adjusted what they ate.

Maybe the other fish, the pink, Chinook and larger chum salmon, ate prey that wasn't directly affected by the type of shorelines present -- such as plankton, which was in the water at both locations -- or were large and strong enough to swim through both areas, eating along the way, before their stomach contents were measured.

But small chum salmon are especially dependent on the tiny crustaceans more common along restored beach sites. And while none of the fish studied were starving, the fish whose diets changed may have used up considerable energy trying to keep a balanced diet.

"The [type of] copepods that chum salmon usually feed on are brightly colored and they're found near the bottom," Munsch said. In other words, the chum's typical diet is easy prey. "We think that chum salmon along armored shorelines might have to spend more energy searching for prey that are harder to see, or chasing prey that are more evasive, when that energy should be allocated to growth or migration."

This study and other recent papers by Cordell's research team are informing Seattle's Seawall Project, which is replacing the current waterfront wall with a structure that intends to be friendlier to fish while protecting city infrastructure.

###

The research was funded by the Seattle Department of Transportation and a National Science Foundation Graduate Research Fellowship. Jason Toft, a research scientist in UW fisheries, is another co-author on this paper.

For more information, contact Cordell at jcordell@uw.edu or 206-543-7532 and Munsch at smunsch@uw.edu.

Media Contact

Michelle Ma
mcma@uw.edu
206-543-2580

 @UW

http://www.washington.edu/news/ 

Michelle Ma | EurekAlert!

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>