Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Will grassland soil weather a change?

17.12.2015

Grassland soil microbe communities show seasonal responses, deserve more research

There's more to an ecosystem than the visible plants and animals. The soil underneath is alive with vital microbes. They make sure nutrients from dead plant and animal material are broken down and made useable by other plants. This completes the process of nutrient cycling and carbon storage.


Elizabeth Carlisle reaches into a +Heat plot during plot work in Fall 2010.

Photo credit Danny Walls

Scientists are learning more about how important these microbes are. But how do changes in temperature and precipitation levels affect microbes? And will that affect carbon storage?

A view of the whole experimental layout after initiation of warming and precipitation treatments."These pasture systems are pretty understudied in terms of how climate change will affect them, which is not good because these areas rely so heavily on agriculture," says Lindsey Slaughter of the University of Kentucky. "While this work was part of a longer project studying plant communities, I was able to study soil microbial communities over one year because they are such an important part of these ecosystems."

The project contained four study conditions applied to a Kentucky pasture. One treatment experienced the natural seasonal changes of rainfall and temperature. A second treatment was 3°C warmer than the natural temperature. A third received 30% more precipitation during the growing season. A final group received both extra warming and rainfall treatments.

Slaughter took samples of the soil and its microbes each season. She measured various features of the microbial population. She also looked at how these bacteria and fungi responded to carbon in soil as food.

The experiment revealed some differences associated with warming. Winter soils in the warmed plots had less carbon available for microbial use. These warmed plots also contained 16% more microbes, year-round, compared to those not warmed. However, the most variation occurred because of the seasonal changes in temperature and precipitation, not the experimental changes.

"It was really unexpected because we thought that the experimental conditions would lead to more changes for the soil microbes," explains Slaughter. "We only sampled one year out of the larger five-year study. We can't be sure if the microbes experienced changes initially and just adapted by the time we sampled them, or if their characteristics stayed the same over the whole period. It's an issue of timing that deserves more research."

Reaching into an added heat test plotThe results do not mean these microbes are immune to a changing climate. Slaughter explains the experiment may have reflected short-term stresses the bacteria are able to cope with. For example, the year the study was conducted was a normal year for weather, but in the past the area experienced severe drought.

"If the changes that I saw in one unstressed year, such as the low carbon in the winter in warmed plots, were to persist in the next couple of years, that could have long term effects on the microbes and even the plants," Slaughter says. "We found big differences in plant communities due to the different treatments, even though we saw little difference in soil microbial communities."

She adds that more severe, long-term stresses from a changing climate could cause negative effects. The role of soil microbes in storing carbon dioxide is important to consider in climate change models because they can have such a large impact.

"It's hard to make generalizations about how areas will react to the effects of climate change. Different regions will experience different changes," says Slaughter. "Our results show that for this year-long period, seasonal changes had more of an effect than making the soils warmer and wetter. But the small changes we did see definitely point to the need for a long-term study here and in other locations."

###

Soil Science Society of America Journal published the research, funded by the U.S. Department of Energy and National Science Foundation.

Susan Fisk | EurekAlert!

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>