Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

White roofs may successfully cool cities

29.01.2010
Painting the roofs of buildings white has the potential to significantly cool off cities and mitigate some impacts of global warming, a new study indicates.

The research, the first computer modeling study to simulate the impacts of white roofs on urban areas worldwide, suggests there may be merit to an idea advanced by U.S. Energy Secretary Steven Chu and other policymakers that white roofs can be an important tool to help society adjust to climate change.

But the study team cautions that there are still many hurdles between the concept and actual use of white roofs to counteract rising temperatures.

"Our research demonstrates that white roofs, at least in theory, can be an effective method for reducing urban heat," says Keith Oleson, the lead author of the study and a scientist at the National Center for Atmospheric Research (NCAR). "It remains to be seen if it's actually feasible for cities to paint their roofs white, but the idea certainly warrants further investigation."

The new study has been accepted for publication in Geophysical Research Letters, a journal of the American Geophysical Union (AGU).

Cities are particularly vulnerable to climate change because they are warmer than outlying rural areas. Asphalt roads, tar roofs, and other artificial surfaces absorb heat from the Sun, creating an urban "heat island effect" that can raise temperatures on average by 1 to 3 degrees Celsius (2 to 5 degrees Fahrenheit) or more compared to rural areas. White roofs would reflect some of that heat back into space and cool temperatures, much as wearing a white shirt on a sunny day can be cooler than wearing a dark shirt.

The study team used a newly developed computer model to simulate the amount of solar radiation that is absorbed or reflected by urban surfaces. The model simulations, which provide scientists with an idealized view of different types of cities around the world, indicate that, if every roof were entirely painted white, the urban heat island effect could be reduced by 33 percent. This would cool the world's cities by an average of about 0.4 degrees Celsius (0.7 degrees Fahrenheit), with the cooling influence being particularly pronounced during the day, especially in summer.

The authors emphasize that their research should be viewed as a hypothetical look at typical city landscapes rather than the actual rooftops of any one city. In the real world, the cooling impact might be somewhat less because dust and weathering would cause the white paint to darken over time and parts of roofs would remain unpainted because of openings such as heating and cooling vents.

In addition, white roofs would have the effect of cooling temperatures within buildings. As a result, depending on the local climate, the amount of energy used for space heating and air conditioning could change, which could affect both outside air temperatures and the consumption of fossil fuels such as oil and coal that are associated with global warming. Depending on whether air conditioning or heating is affected more, this could either magnify or partially offset the impact of the roofs.

"It's not as simple as just painting roofs white and cooling off a city," Oleson says.

The research indicates that some cities would benefit more than others from white roofs, depending on such factors as the city's location and design:

- Roof density. Cities where roofs make up more of the urban surface area would cool more.
- Construction. Roofs that allow large amounts of heat from the Sun to penetrate the interior of a building (as can happen with metal roofs and little
insulation) are less effective in cooling outside temperatures when painted white.

- Location. White roofs tend to have a larger impact in relatively warm climates that receive strong, year-round sunlight.

While the model did not have enough detail to capture individual cities, it did show the change in temperatures in larger metropolitan regions. The New York area, for example, would cool in summer afternoons by almost 1.1 degrees Celsius (2 degrees Fahrenheit).

The study team used a new computer model, developed by Oleson and colleagues, which is designed to assess the impacts of a changing climate on urban populations and explore options for countering rising temperatures. This urban canyon model simulates temperature changes in city landscapes, capturing such factors as the influence of roofs, walls, streets, and green spaces on local temperatures. Oleson has successfully linked it to a computer simulation of worldwide climate, the NCAR-based Community Climate System Model, thereby enabling researchers to study the interactions between global climate change and urban areas.

The new model does not yet have the power to replicate the architecture and design of specific cities. Instead, the research team created abstractions of cities in the model, using classes of population density, urban design, and building construction. Oleson and his colleagues plan to continue refining the model to provide more information for policymakers concerned about protecting urban populations from the risks associated with heat waves and other changes in climate.

"It's critical to understand how climate change will affect vulnerable urban areas, which are home to most of the world's population," says NCAR scientist Gordon Bonan, a co- author of the study.

This study was funded by the National Science Foundation, NCAR's sponsor.

Maria-Jose Vinas | American Geophysical Union
Further information:
http://www.agu.org
http://www.agu.org/journals/pip/gl/2009GL042194-pip.pdf

More articles from Earth Sciences:

nachricht Climate change in a warmer-than-modern world: New findings of Kiel Researchers
24.04.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Tiny microenvironments in the ocean hold clues to global nitrogen cycle
23.04.2018 | University of Rochester

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

Scientists create innovative new 'green' concrete using graphene

24.04.2018 | Materials Sciences

BAM@Hannover Messe: innovative 3D printing method for space flight

24.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>