Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

White roofs may successfully cool cities

29.01.2010
Painting the roofs of buildings white has the potential to significantly cool off cities and mitigate some impacts of global warming, a new study indicates.

The research, the first computer modeling study to simulate the impacts of white roofs on urban areas worldwide, suggests there may be merit to an idea advanced by U.S. Energy Secretary Steven Chu and other policymakers that white roofs can be an important tool to help society adjust to climate change.

But the study team cautions that there are still many hurdles between the concept and actual use of white roofs to counteract rising temperatures.

"Our research demonstrates that white roofs, at least in theory, can be an effective method for reducing urban heat," says Keith Oleson, the lead author of the study and a scientist at the National Center for Atmospheric Research (NCAR). "It remains to be seen if it's actually feasible for cities to paint their roofs white, but the idea certainly warrants further investigation."

The new study has been accepted for publication in Geophysical Research Letters, a journal of the American Geophysical Union (AGU).

Cities are particularly vulnerable to climate change because they are warmer than outlying rural areas. Asphalt roads, tar roofs, and other artificial surfaces absorb heat from the Sun, creating an urban "heat island effect" that can raise temperatures on average by 1 to 3 degrees Celsius (2 to 5 degrees Fahrenheit) or more compared to rural areas. White roofs would reflect some of that heat back into space and cool temperatures, much as wearing a white shirt on a sunny day can be cooler than wearing a dark shirt.

The study team used a newly developed computer model to simulate the amount of solar radiation that is absorbed or reflected by urban surfaces. The model simulations, which provide scientists with an idealized view of different types of cities around the world, indicate that, if every roof were entirely painted white, the urban heat island effect could be reduced by 33 percent. This would cool the world's cities by an average of about 0.4 degrees Celsius (0.7 degrees Fahrenheit), with the cooling influence being particularly pronounced during the day, especially in summer.

The authors emphasize that their research should be viewed as a hypothetical look at typical city landscapes rather than the actual rooftops of any one city. In the real world, the cooling impact might be somewhat less because dust and weathering would cause the white paint to darken over time and parts of roofs would remain unpainted because of openings such as heating and cooling vents.

In addition, white roofs would have the effect of cooling temperatures within buildings. As a result, depending on the local climate, the amount of energy used for space heating and air conditioning could change, which could affect both outside air temperatures and the consumption of fossil fuels such as oil and coal that are associated with global warming. Depending on whether air conditioning or heating is affected more, this could either magnify or partially offset the impact of the roofs.

"It's not as simple as just painting roofs white and cooling off a city," Oleson says.

The research indicates that some cities would benefit more than others from white roofs, depending on such factors as the city's location and design:

- Roof density. Cities where roofs make up more of the urban surface area would cool more.
- Construction. Roofs that allow large amounts of heat from the Sun to penetrate the interior of a building (as can happen with metal roofs and little
insulation) are less effective in cooling outside temperatures when painted white.

- Location. White roofs tend to have a larger impact in relatively warm climates that receive strong, year-round sunlight.

While the model did not have enough detail to capture individual cities, it did show the change in temperatures in larger metropolitan regions. The New York area, for example, would cool in summer afternoons by almost 1.1 degrees Celsius (2 degrees Fahrenheit).

The study team used a new computer model, developed by Oleson and colleagues, which is designed to assess the impacts of a changing climate on urban populations and explore options for countering rising temperatures. This urban canyon model simulates temperature changes in city landscapes, capturing such factors as the influence of roofs, walls, streets, and green spaces on local temperatures. Oleson has successfully linked it to a computer simulation of worldwide climate, the NCAR-based Community Climate System Model, thereby enabling researchers to study the interactions between global climate change and urban areas.

The new model does not yet have the power to replicate the architecture and design of specific cities. Instead, the research team created abstractions of cities in the model, using classes of population density, urban design, and building construction. Oleson and his colleagues plan to continue refining the model to provide more information for policymakers concerned about protecting urban populations from the risks associated with heat waves and other changes in climate.

"It's critical to understand how climate change will affect vulnerable urban areas, which are home to most of the world's population," says NCAR scientist Gordon Bonan, a co- author of the study.

This study was funded by the National Science Foundation, NCAR's sponsor.

Maria-Jose Vinas | American Geophysical Union
Further information:
http://www.agu.org
http://www.agu.org/journals/pip/gl/2009GL042194-pip.pdf

More articles from Earth Sciences:

nachricht Colorado River's connection with the ocean was a punctuated affair
16.11.2017 | University of Oregon

nachricht Researchers create largest, longest multiphysics earthquake simulation to date
14.11.2017 | Gauss Centre for Supercomputing

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>